期刊文献+

改性钛酸锂复合材料作为高倍率锂离子电池负极材料研究 被引量:3

Preparation of Li_4Ti_5O_(12)/C Composite and Its Application to Anode Material of High Rate Lithium-ion Battery
原文传递
导出
摘要 使用简单的水解反应和低温热处理过程所制备的Li_4Ti_5O_(12)/C复合材料具有良好的倍率性能。在水解过程中引入表面活性剂溴化十六烷基三甲铵(CTAB),能够明显地改善锂离子电池负极材料Li_4Ti_5O_(12)/C的倍率性能。在0.5,1,2,5,10C的倍率条件下,电极材料的比容量分别达到162,154,121,80,60 m Ah/g。明显高于使用物理混合方法所制备的Li_4Ti_5O_(12)/C复合材料。同时使用CTAB所制备的Li_4Ti_5O_(12)/C复合材料,在高倍率条件下,还显示出了非常良好的循环稳定性,因为其拥有快速的Li+迁移速率(8.97×10-13cm2/s),较小的传荷电阻(Rct)35.2Ω和较小的体积电阻(Rs)6.8Ω。该方法具有实际的应用价值。 The Li_4Ti_5O_(12)/C( LTO/C) composite with excellent rate performances was synthesized via a facile hydrolysis reaction followed by a low temperature heat treatment. In the hydrolysis process,the introduction of cetyltrimethylammonium bromide( CTAB) as a surfactant can significantly improve the rate performances of Li_4Ti_5O_(12)/C composite as anode material for lithium ion battery( LIB). The specific capacities of the obtained composite at charge and discharge rates of 0. 5,1,2,5 and 10 C were respectively162,154,121,80 and 60 m Ah/g,which was apparently larger than those of the Li_4Ti_5O_(12)/C by physical mixing processes. The Li_4Ti_5O_(12)/C prepared with CTAB also showed excellent cycling stability at high rate,attributed to its larger diffusion coefficient of lithium ion( 8. 97 × 10-13cm^2/s),smaller charge-transfer resistance Rct( 35. 2 Ω) and volume resistance Rs( 6. 8 Ω) than those of the composite by physical mixing. Therefore,this study has important theory significance and practical application value.
作者 孟伟巍
出处 《钢铁钒钛》 CAS 北大核心 2017年第3期52-56,77,共6页 Iron Steel Vanadium Titanium
关键词 钛酸锂/碳复合材料 锂离子电池 电极材料 水解反应 低温热处理 表面活化剂 比容量 Li4Ti5O12/C composite lithium ion battery electrode material hydrolysis low temperature thermal treatment surfactant specific capacities
  • 相关文献

参考文献3

二级参考文献26

  • 1高玲,仇卫华,赵海雷.合成温度对Li_4Ti_5O_(12)电化学性能的影响[J].电池,2004,34(5):351-352. 被引量:22
  • 2高玲,仇卫华,赵海雷.Li_4Ti_5O_(12)作为锂离子电池负极材料电化学性能[J].北京科技大学学报,2005,27(1):82-85. 被引量:28
  • 3吴国良,金维华,刘人敏.石墨/LiCoO_2锂离子电池研制[J].电池,1996,26(2):62-65. 被引量:5
  • 4Ohzuku T, Ueda A, Yamamoto N, et al. Factor affecting the capacity retention of lithium-ion cells[J]. J Power Sources, 1995, 54(1):99 - 102.
  • 5Sun L, Wang G X, Liu H K, et al. Synthesis of nonstoichiometric amorphous Mg-based alloy electrodes by mechanical milling[J]. Electrochemical and Solid-State Letters, 2000, 3(3): 121 - 124.
  • 6Robertson A D, Trevino L, Tukamoto H, et al. New inorganic spinel oxides for use as negative electrode materials in future lithiumion batteries[J]. J Power Sources, 1999, 81 - 82: 352- 357.
  • 7Prosini P P, Mancini R, Petrucci L, et al. Li4Ti5O12 as anode in allsolid-state, plastic, lithium-ion batteries for low-power applications[J]. Solid State Ionics, 2001, 144(1 -2): 185 - 192.
  • 8Guerfi A, Sevigny S, Lagace M, et al. Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators [ J ]. J Power Sources, 2003, 119 - 121:88 - 94.
  • 9Zaghib K, Simoneau M, Armand M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer recharge able batteries[J]. J Power Sources, 1999, 81-82: 300-305.
  • 10Lundblad A, Bergman B. Synthesis of LiCoO2 starting from carbonate precursors ( Ⅰ ) . The reaction mechanism [ J ] . Solid State Ionics, 1997, 96(3 -4): 173 - 181.

共引文献73

同被引文献31

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部