期刊文献+

固相真空转晶法制备α-AlH_3及其稳定化 被引量:6

Preparation of α-AlH_3 via solid-state and vacuum crystal transformation method and its stabilization
下载PDF
导出
摘要 AlH_3由于其极高氢含量和潜在的应用价值而得到了国内外广泛的关注,然而,现有的α-AlH_3制备工艺复杂、成本高及长期稳定性能差等问题,而限制了其广泛研究与应用。采用固态真空转晶法制备晶型单一、高品质的α-AlH_3。而后采用小分子化合物对α-AlH_3进行包覆实验,并通过X射线衍射、电子顺磁共振仪、热失重差热分析、扫描电子显微镜和透射电子显微镜证实包覆成功。对包覆前后的α-AlH_3在室温和90%湿度条件下进行稳定性对比实验,结果表明,未包覆的α-AlH_3在10 d后即分解,而包覆后的α-AlH_3在16 d后仍保持很好的稳定性。该技术摒弃高毒甲苯溶液转晶行为,兼具成本低和连续化工业生产的优点,为α-AlH_3的规模化生产和长期贮存提供了新的思路。 Aluminum hydride is particularly attractive as a hydrogen storage material due to its high hydrogen volumetric capacities.However,issues of complicated preparation process,poor stability and high cost of α-AlH3 restrict its further development and applications.Herein,high-quality α-AlH3 has been prepared based on a solid-state crystal transformation method under vacuum condition.It has been successfully coated,which was confirmed by a combined analysis of XRD,EPR,TGA-DSC,SEM and TEM.In the condition of room temperature and 90% humidity,the pristine α-AlH3 decomposed 10 days later,whereas the coated α-AlH3 shows good stability even after 16 days storage.This technique excludes the traditional crystallization transformation behavior of AlH3 in toxic toluene,providing a new idea way of large-scale production of the α-AlH3 with long-term storage capability.
作者 朱朝阳 夏德斌 王平 林凯峰 范瑞清 杨玉林 ZHU Zhaoyang;XIA Debin;WANG Ping;LIN Kaifeng;FAN Ruiqing;YANG Yulin(MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage,School of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150001,China;Science and Technology on Aerospace Chemical Power Laboratory,Xiangyang 441003,China;Hubei Institute of Aerospace Chemotechnology,Xiangyang 441003,China)
出处 《固体火箭技术》 EI CAS CSCD 北大核心 2019年第1期60-65,共6页 Journal of Solid Rocket Technology
基金 国家自然科学基金(21571042 21873025) 装备预研航天科技联合基金(6141B0626020101)
关键词 三氢化铝 包覆 推进剂 稳定化 aluminum hydride coating propellant stabilizing
  • 相关文献

参考文献6

二级参考文献109

  • 1许炜,陶占良,陈军.储氢研究进展[J].化学进展,2006,18(2):200-210. 被引量:84
  • 2Zuttel, A. Materials Today, 2003, 6(9): 24
  • 3Zhou, L. Renewable and Sustainable Energy Reviews, 2005, 9:395
  • 4Sakintunaa, B.; Darkrimb, F. L.; Hirscherc, M. Int. J. Hydrogen Energy, 2007, 32:1121
  • 5Sandrock, G.; Reilly, J.; Graetz, J.; Zhou, W.; Johnson, J.; Wegrzyn, J. Appl. Phys. A, 2005, 80:687
  • 6Graetz, J.; Reilly, J. J. Phys. Chem. B, 2005, 109:22181
  • 7Orimo, S.; Nakamori, Y.; Kato, Y. T.; Brown, C.; Jensen, C. M. Appl. Phys. A, 2006, 80:8
  • 8Sandrock, G.; Reilly, J.; Graetz, J.; Zhou, W. M.; Johnson, J.; Wegrzyn, J. J. Alloy. Compd., 2006, 421:18
  • 9Graetz, J.; Reilly, J. J. Alloys Compd., 2006, 424:262
  • 10Graetz, J.; Reilly, J.; Kulleck, J. G.; Bowman, R. C. J. Alloy. Compd., 2007, 446-447:271

共引文献49

同被引文献37

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部