期刊文献+

微扩散管内幂律流体在不同外电场驱动下非稳态流动数值仿真

Unsteady Flow Numerical Simulation of Power-law Fluids Flowing in the Micro-diffuser Driven by Different Electric Fields
原文传递
导出
摘要 电场驱动下的非牛顿流体在微米级扩散管道内非稳态电渗流动特性是MEMS管设计人员关注的焦点,大部分实际液体可近似为用幂律模型描述的纯粘性流体,所以论文针对幂律流体在有限长微扩散管道内在两种不同形式的外加电场驱动下的非稳态电渗流动情况进行数值仿真.基于Ostwald-De Wael幂律模型和连续介质假说,采用高精度紧致有限差分离散二维完全Poisson-Boltzmann电势方程和Cauchy动量方程,对恒定电场及满足Maxwell方程的电场进行数值仿真,讨论了微扩散管中幂律流体在两种不同外加电场驱动下的瞬时流场分布的差异.结果表明,初始时刻固定扩散角和无量纲壁面电势,无量纲电动宽度的变化对幂律流体电渗流速度分布影响较大;在微扩散管上游等截面处,由恒定电场驱动及Maxwell电场驱动电渗流速度分布差别极小,在扩散管中下游则出现了明显的差别;由恒定电场驱动下的电渗流动在扩散管不同截面下的速度峰值相近,但Maxwell电场诱导的电渗流速度峰值则随管道半径变化出现较大差别.对于外加电场驱动的电渗流动,不同形式的外电场可使流场产生较大差别,而不同性质的流体也会形成不同的流场分布. Non-newtonian fluids unsteady electroosmosis flow in micro-diffuser is interesting to the MEMS design personnel.And most of the actual liquid is approximate to pure viscous fluid which can be described by power-law model.This paper is in view of the power-law fluids unsteady electroosmosis flow in finite micro-diffuser at two different forms of applied electric fields.Based on Ostwald-De Wael powerlaw model and continuum hypothesis,high accuracy compact difference scheme is used to discrete the twodimensional completely Poisson-Boltzmann and the modified Cauchy momentum equations.Using the numerical method to simulate the power-law fluids electroosmosis flow induced by the constant electric field and the Maxwell electric field,and discusse the difference of instantaneous flow field distribution between the two different applied electric fields.The results show that at the initial time while the diffuser angle and the dimensionless wall potential is fixed,the flow field distribution of power-law fluids are influenced by the change of dimensionless electric width;the difference of velocity profiles between the constant electric field and Maxwell electric field is very small in upstream section,however there is an obvious difference in middle and downstream of diffuser;the speed peak of electroosmosis flow driven by the constant electric field in the different diffuser cross section is close,but it is different to the Maxwell electric field and the induced velocity is change with the pipe radius.For the electroosmosis flow driven by applied electric field,different forms of electric field can make the flow field have great difference,and the different nature of the fluids would form different flow field distribution.
作者 段娟 熊永亮
出处 《固体力学学报》 CAS CSCD 北大核心 2016年第S1期39-44,共6页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金项目(11502087)资助
关键词 微扩散管道 电渗流 幂律流体 数值模拟 micro-diffuser electroosmotic flow power-law fluids numerical simulation
  • 相关文献

参考文献1

二级参考文献13

  • 1聂德明,林建忠,石兴.弯管电渗流场的数值模拟及研究[J].分析化学,2004,32(8):988-992. 被引量:6
  • 2吴健康,王贤明.生物芯片微通道周期性电渗流特性[J].力学学报,2006,38(3):309-315. 被引量:14
  • 3Patankar NA, Hu HH. Numerical simulation of electroosmotic flow. Analytical Chemistry, 1998, 70: 1870-1881.
  • 4Bianchi F, Ferrigno R, Girault HH. Finite element simulation of an electroosmotic-driven flow division at a T- Junction of microscale dimensions. Analytical Chemistry, 2000, 72:1987-1993.
  • 5Jin Y, Luo GA. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips. Electrophoresis, 2003, 24:1242-1252.
  • 6Christopher MB, Robert HD. Electroosmotic flow in channels with step changes in zeta potential and cross section. Journal of Colloid and Interface Science, 2004, 270: 242- 246.
  • 7Xuan X, Sinton D, Li D. Thermal end effects on electroosmotic flow in a capillary. International Journal of Heat and Mass Transfer, 2004, 47:3145-3157.
  • 8Tian FZ, Li BM, Kwok DY. Lattice Boltzmann simulation of electroosmotic flows in micro- and nanochannels. ICMENS, 2004, 294-299.
  • 9Chai ZH, Shi BC. Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method. Physics Letters A, 2007, 364:183-188.
  • 10Masliyah J. Electrokinetic Transport Phenomena, Alberta Oil Sands Technology and Research Authority. Alberta, Canada, 1994.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部