期刊文献+

基于多尺度多特征的高空间分辨率遥感影像建筑物自动化检测 被引量:11

Automatic building detection of high-resolution remote sensing images based on multi-scale and multi-feature
下载PDF
导出
摘要 建筑物检测在城市规划、变化检测、地表覆盖等方面均起到重要作用。然而高空间分辨率遥感影像(简称"高分影像")中建筑物朝向不一,形态颜色各异,大小尺寸也有着较大差别,使得建筑物检测成为一道难题。为此,提出一种基于多尺度多特征来自动化检测高分影像中建筑物的方法:首先,对影像降采样构建高斯金字塔模型,固定尺度的滑动窗口在不同层影像中对应着不同的实际地面面积;然后,对影像进行超像素分割并计算滑动窗口中多种描述建筑物特性的特征值,通过多特征融合来衡量建筑物目标在不同尺度影像中的显著性;最后,计算超像素块的显著性均值,结合Otsu算法自动求取阈值,进一步设置长宽比等约束条件,从而准确、自动地提取建筑物目标。分别采用空间分辨率为0. 5 m和0. 2 m的影像进行实验,并和基于颜色和纹理建模的马尔科夫随机场模型算法进行定性和定量的比较。实验结果表明,该方法对高分影像中建筑物的提取有更好的实际效果和检测精度。 Building detection plays an important role in urban planning,change detection,surface coverage and so on.However,in high resolution remote sensing images,buildings vary in shape,color,and size,which makes building detection a difficult problem.Therefore,this paper proposes a method based on multi-scale and multi-feature to automatically extract buildings in high resolution images:Firstly,down sampling images are used to construct Gauss pyramid model,while fixed size windows in different layers of pyramid image represent different ground areas.Then multi features are calculated which describe building characteristics by sliding windows,and multi features are fused to evaluate the saliency of building in different scales.Then the saliency of superpixels is calculated,and Otsu algorithm is used to automatically determine the threshold,and furthermore,some constraints such as the aspect ratio were combined to extract buildings accurately and automatically.Experiments were made by 0.5 m and 0.2 m high resolution remote sensing images in comparison with the markov random field model based on color and texture modeling algorithm for qualitative and quantitative comparison.The results show that the method suggested in this paper can obtain more satisfactory precision and has higher effect on building detection from high-resolution remote sensing images.
作者 吴柳青 胡翔云 WU Liuqing;HU Xiangyun(School of Remote Sensing and Information Engineering,Wuhan University,Wuhan 430079,China)
出处 《国土资源遥感》 CSCD 北大核心 2019年第1期71-78,共8页 Remote Sensing for Land & Resources
基金 国家自然科学基金项目"遥感影像中典型人工目标自动提取的多层次视觉认知计算方法"(编号:41771363)资助
关键词 高分影像 多尺度 多特征 建筑物检测 超像素 high resolution image multi-scale multi-feature building detection superpixel
  • 相关文献

参考文献7

二级参考文献56

  • 1林怡,陈鹰.用立体影像匹配和数学形态变换自动生成DEM[J].中国图象图形学报(A辑),2003,8(4):447-452. 被引量:11
  • 2汪行,陈学佺,金敏.线段提取在高分辨率遥感图像建筑物识别中的应用[J].计算机辅助设计与图形学学报,2005,17(5):928-934. 被引量:11
  • 3郭海涛,徐青,张保明.多重约束下的建筑物阴影提取[J].武汉大学学报(信息科学版),2005,30(12):1059-1062. 被引量:17
  • 4张路,廖明生.一种顾及上下文的遥感影像模糊聚类[J].遥感学报,2006,10(1):58-65. 被引量:17
  • 5DAVIS C H, WANG X Y. Urban Land Cover Classifica tion from High Resolution Multi spectral IKONOS Imagery [C] // Proceedings of IEEE IGARSS. Toronto:[s. n. ], 2002:1204-1206.
  • 6HEROLD M, GARDNER M, ROBERTS D. Spectral Resolu tion Requirement for Mapping Urban Areas [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41 (9):1907-1919.
  • 7FRAUMAN E, WOI.FF E. Segmentation of Very High Spatial Resolution Satellite Images in Urban Areas for Segments based Classification [C]//Proceedings of the 3rd International Symposium Remote Sensing and Data Fusion over Urban Areas. Arizona:ISPRS,2005 : 24-27.
  • 8BAUER T, STEINNOCHER K. Per parcel Land Use Classification in Urban Areas Applying a Rule based Technique [J]. Geo-lnformation System, 2001 (6) 28- 33.
  • 9HEROLD M, SCEPAN J, MULI.ER A, et al. Object oriented Mapping and Analysis of Urban Land Use/Cover Using IKONOS Data [C]//Proceedings of the 22nd EAR SEL. Symposium. Prague: EARSEL, 2002 : 11- 18.
  • 10HOFMANN P. Detecting Urban Features from IKONOS Data Using Additional Elevation Information [J]. GIS Geo Information System, 2001,6: 28-33.

共引文献126

同被引文献138

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部