期刊文献+

基于Vis-NIR光谱的柑橘叶片黄龙病检测及其光谱特性研究 被引量:13

Detection of Citrus Greening Based on Vis-NIR Spectroscopy and Spectral Feature Analysis
下载PDF
导出
摘要 黄龙病作为柑橘类水果最具毁灭性的疾病之一,目前尚无有效的治愈手段,因此疾病预防成为已知的唯一有效方法。基于四种柑橘叶片(健康叶片、黄龙病叶片、铁缺乏叶片及氮缺乏叶片)VIS-NIR的反射光谱详细讨论了黄龙病的辨别方法以及在判别模型中光谱特征值的提取方法。在两类判别分析的特征值提取方法中,判别值(discriminability)运算的引入,为特征值提取提供了一个可靠依据,判别值越大表明光谱差异性越大。以被选特征值建立的Fisher线性判别分析模型,黄龙病与健康、铁缺乏、氮缺乏叶片的分类判别预测准确率分别都超过了90%,分类效果符合预期。最后,又讨论了分类树(classificationTree)在多类判别中的应用。通过对柑橘叶片原始反射谱,一阶导数谱及被选特征值分别建立分类模型,四种柑橘叶片平均预测准确度都超过88%,尤其是基于特征值的分类结果更是超过94%,验证了在多类判别中检测柑橘黄龙病的可行性及特征值提取的重要性。结合传统分类方法(k-NN,Bayesian)的结果分析,特征值作为输入变量的分类结果明显要优于原始光谱,证实了特征值选取的正确性,并为将来基于光谱特征值开发多光谱成像技术检测黄龙病打下坚实的基础。 In the present paper we discussed the methods of classification of citrus greening and extraction of spectral features based on the spectral reflectance of four different statuses of citrus leaves (healthy ,HLB ,iron deficiency and nitrogen deficien-cy) .Between two classes of classification ,the values of discriminability of different spectra were calculated to extract spectral features .The greater value of discriminability showed a bigger difference of the two spectra ,which means it would be easier to distinguish the two classes .By the Fisher linear discriminant analysis ,three classification models (HLB & healthy ,HLB & iron deficiency and HLB & nitrogen deficiency ) based on the spectral features yielded more than 90% accuracies ,which were better than expected .And at last ,we discussed the application of the classification tree in multi-class discriminant analysis and spectral features extraction .The models trained based on the original reflectance spectra ,first derivative and selected spectral features yielded more than 88% average accuracy ,and especially the model based on the spectral features yielded more than 94% average accuracies ,which verified the feasibility of detection of citrus greening in multi-class discriminant analysis and the importance of the spectral feature extraction .The results were compared based on classification tree ,k-NN and Bayesian classifiers .Adoption of spectral features as input variables was significantly superior to using the original spectrum ,which confirmed the validity of spectral feature selection .Spectral features could be used well for developing a multi-spectral imaging system to detect the citrus g reening .
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第10期2713-2718,共6页 Spectroscopy and Spectral Analysis
基金 The Citrus Research and Development Council 北京市共建项目专项资助
关键词 黄龙病 判别值 FISHER线性判别 分类树 近红外光谱 Citrus greening Discriminability Fisher linear discriminant analysis Classification tree Vis-NIR spectroscopy
  • 相关文献

参考文献3

二级参考文献60

  • 1田亚南,柯穗,柯冲.应用多聚酶链式反应(PCR)技术检测和定量分析柑桔黄龙病病原[J].植物病理学报,1996,26(3):243-250. 被引量:93
  • 2洪添胜,乔军,Ning Wang,Michael O. Ngadi,赵祚喜,李震.基于高光谱图像技术的雪花梨品质无损检测[J].农业工程学报,2007,23(2):151-155. 被引量:111
  • 3Gómez-Sanchis J,L.Gómez-Chova b,N.Aleixos,et al.Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins[J].Journal of Food Engineering,2008,89(1):80-86.
  • 4Juan Xing,Cedric Bravo,Pal T Jancsok,et al.Detecting Bruises on ‘Golden Delicious' apples using hyperspectral imaging with multiple wavebands[J].Biosystems Engineering,2005,90(1):27-36.
  • 5Govindarajan K N,Lauren M G,Jeyamkondan S,et al.Visible/near-infrared hyperspectral imaging for beef tenderness prediction[J].Computers and Electronics in Agriculture,2008,64(2):225-233.
  • 6Ariana D P,Lu R.,Guyer D E.Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers[J].Computers and Electronics in Agriculture,2006,53(1):60-70.
  • 7Park B,Windham W R.,Lawrence K C,et al.Contaminant classification of poultry hyperspectral imagery using a spectral angle mapper algorithm[J].Biosystems Engineering,2007,96(3):323-333.
  • 8Jianwei Qin,Thomas F B,Mark A R,et al.Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence[J].Journal of Food Engineering,2009,93(2):183-191.
  • 9Cheng H D,Jiang X H,Sun Y,et al.Color image segmentation:advances and prospects[J].Patter Recognition,2001,34:2259-2281.
  • 10边肇祺 张学工.模式识别[M].北京:清华大学出版社,2002..

共引文献60

同被引文献139

引证文献13

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部