期刊文献+

J_1-J_2团簇的数值模拟研究 被引量:3

NUMERICAL SIMULATION OF J _1-J_2 CLUSTERS
下载PDF
导出
摘要 采用严格对角化方法计算了由几十个格点自旋构成的量子自旋团簇的基态总自旋 .在无阻挫情形 ,基态总自旋并不等于团簇的最低可能总自旋 ,而是取一个较大的值 .这意味着即使对于具有纳米尺寸的团簇 ,量子涨落也不破坏基态的经典奈尔序 .若在团簇中引入阻挫 ,则将诱导从奈尔序到自旋无序的量子相变 ,该相变可以通过基态总自旋的变化进行描述和标记 .计算表明 ,由于在相变点存在能级交错 ,故该量子相变应该是一级相变 .从团簇的数值计算结果可以推断 :对于二维无限 J1-J2 模型 ,临界点在 J2 / J1=0 .3 762 (± 0 .0 0 0 2 )处 .这一结果比以前的解析近似研究和有限系统标度分析的结果更为精确 . For the quantum spin clusters of tens of sites, this paper calculates the total spin of ground state by exact diagonalization. In the non frustrated case, the ground state total spin takes not the lowest possible total spin but a higher value. It means the existence of Neél order in the ground state even for the clusters of nano scale. If introducing frustrations into clusters, it can induce a quantum phase transition from Neél order to spin disorder. This transition can be described and marked through the change of the ground state total spin. Calculations show that it should be the first order transition since the existence of level crossing at the critical J 2/J 1. From the numerical results of clusters, it can be inferred that for the infinite two dimensional J 1 J 2 model, the critical J 2/J 1 should be equal to 0 376 2 (±0.000 2). This result is more accurate than the previous data by analytical approximations and scaling analysis based on finite systems.
作者 高莉 刘拥军
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2002年第4期21-26,共6页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 (19990 6 4 6 ) 江苏省教育厅自然科学基金资助项目 (0 2 KJD14 0 0 14 )
关键词 数值模拟 J1-J2团簇 基态总自旋 一级量子相变 自旋无序 严格对角化方法 量子自旋团簇 高温超导 J 1 J 2 cluster ground state total spin first order quantum transition spin disorder critical value exact diagonalization
  • 相关文献

参考文献2

  • 1Tom Kennedy,Elliott H. Lieb,B. Sriram Shastry. Existence of Néel order in some spin-1/2 Heisenberg antiferromagnets[J] 1988,Journal of Statistical Physics(5-6):1019~1030
  • 2Ian Affleck,Tom Kennedy,Elliott H. Lieb,Hal Tasaki. Valence bond ground states in isotropic quantum antiferromagnets[J] 1988,Communications in Mathematical Physics(3):477~528

同被引文献42

  • 1王春花,陈东芳,刘拥军.掺杂对一维反铁磁海森堡自旋链性质的影响[J].扬州大学学报(自然科学版),2005,8(1):28-31. 被引量:8
  • 2陈东芳.准一维海森堡反铁磁自旋系统的数值研究[J].华东船舶工业学院学报,2005,19(2):33-35. 被引量:1
  • 3蒋建军,张松俊,刘拥军.阻挫对准一维非对称子格反铁磁链自旋波激发的影响[J].物理学报,2006,55(9):4888-4892. 被引量:3
  • 4MALVEZZI A L. An introduction to numerical methods in low-dimensional quantum systems [J]. Brazilian J Phys, 2003, 33(1): 55- 72.
  • 5MERMIN N D, WAGNER H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models [J]. Phys Rev Lett,1966, 17(22):1133-1136.
  • 6OKAMOTO K, TONEGAWA T, KABURAGI M. Magnetic properties of the S= 1/2 distorted diamond chain at T=0 [J]. J Phys: Condens Matter, 2003,15(35): 5979-5995.
  • 7LIEB E, MATTIS D. Ordering energy levels of interacting spin systems[J]. J Math Phys, 1962, 3(4): 749- 751.
  • 8WHITE S R. Density-matrix algorithms for quantum renormalization groups[J]. Phys Rev B, 1993, 48(14): 10345-10356.
  • 9PESCHEL I, WANG X, KAUiKE M. Density matrix renormalization., new numerical method in physics lecture notes in physics [M]. New York: Spinger, 1999: 27-66.
  • 10WHITE S R. Density matrix formulation for quantum renormalization groups [J]. Phys Rev Lett, 1992, 69(19): 2863- 2866.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部