期刊文献+

一种新的抽取等值面的四面体分解方法 被引量:4

A New Tetrahedral Decomposition Scheme for Extracting Isosurfaces
下载PDF
导出
摘要 MarchingCubes算法是一种从三维数据场中抽取等值面的简单有效的算法。然而 ,该算法并不能保证抽取出的等值面的拓扑同三维数据场的数据保持一致 ,即等值面的拓扑存在二义性。解决这个问题的方法是 ,将三维数据场中每一个立方体网格单元分解为五个四面体单元 ,从每一个四面体单元中抽取等值面。但是 ,在分解过程中由于分解二义性的存在 ,等值面的拓扑仍然存在二义性。本文采用 2 4 分解方法解决了这个问题 。 Marching Cubes is a simple and popular algorithm for extracting isosurfaces from three dimensional data fields. However, it does not guarantee the surface to be topologically consistent with the data, called topological ambiguity. To solve this problem, each cubic grid cell can be decomposed into five tetrahedral cells in the three dimensional data fields, then isosufaces can be extracted from each tetrahedral cell. But during the course of decomposition, decomposed ambiguity yet results in the topological ambiguity of isosurfaces. In this paper, we solve the problem using the 24 decomposition scheme to generate correct topological isosurfaces.
出处 《计算机工程与科学》 CSCD 2002年第6期48-51,共4页 Computer Engineering & Science
关键词 抽取等值面 四面体分解方法 MC算法 拓扑二义性 24-分解 分解二义性 MC algorithm isosurface topological ambiguity decomposed ambiguity 24 decomposition
  • 相关文献

参考文献13

  • 1[1]W E Lorensen, H E Cline. Marching Cubes: A High Resolution 3D Surface Construction Algorithm[J]. Computer Graphics, 1987, 21(4):163-169.
  • 2[2]Drst M J. Letters: Additional Reference to "Marching Cubes"[J].. Computer Graphics, 1987, 22(2):72-73.
  • 3[3]G M Nielson, B Hamann. The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes[A]. Proc of Visualization 91 [C]. 1991.83-91.
  • 4[4]G Wyvil, C McPheeters, B Wyvill. Data Structures for Soft Objects[J]. The Visual Computer, 1986,2(4):227-234.
  • 5[5]A Doi, A Koide. An Efficient Method of Triangulating Equi-Valued Surfaces by Using Tetrahedral Cells[J]. IEICE Trans Commun Elec Enf Syst, 1991, E74(1):214-224.
  • 6[6]B A Payne, A W Toga. Surface Mapping Brain Function on 3D Models[J]. IEEE Computer Graphics and Applications, 1990, 10(5):33-41.
  • 7[7]A Guziec, R Hummel. Expoliting Triangulated Surface Extraction Using Tetrahedral Decomposition[J]. IEEE Trans on Visualization and Computer Graphics, 1995,1(4):328-342.
  • 8[8]B P Carneiro, C T Silva, A E Kaufman. Tetra-Cubes! An Algorithm to Generate 3D Isosurfaces Based upon Tetrahedra[A].Anais Do IX SIBGRAPI[C]. 1996.205-210.
  • 9[9]W J Schroeder, J A Zarge, W Lorensen. Decimation of Triangle Mesh[J]. Computer Graphics, 1992,26(2):65-70.
  • 10[10]M Garland, P S Heckbert. Surface Simplification Using Quadric Error Metrics[J]. Computer Graphics, 1997,31:209-216.

同被引文献61

引证文献4

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部