期刊文献+

微藻矿化去除Pb^(2+)的研究 被引量:7

Study on the Removal of Pb(2+) by Biomineralization Media via Microalgae
下载PDF
导出
摘要 藻类作为水体中的初级生产力,通过生物积累、生物矿化等生理功能与环境中的重金属相互作用、对重金属地球生物化学循环起到关键作用。为了探讨藻类生物矿化去除水体中重金属的现象,文中研究了淡水微藻FZUL-321对Pb^(2+)的去除及矿化。结果表明:微藻FZUL-321对Pb^(2+)有较强的去除能力,且是一个快速去除的过程。随着Pb2+浓度增大,该微藻对Pb^(2+)的去除效果也增大。在弱酸性条件下(p H5.0),其去除Pb^(2+)的效果较好。如在Pb^(2+)初始浓度为100 mg/L,p H 5.0,去除时间为40 min,此时Pb^(2+)的去除量为423.2×10^(-3)干重。原子力显微镜(AFM)对细胞表面的形貌进行观察,发现微藻FZUL-321与Pb(2+)作用后,细胞形貌和尺寸变化较大,如细胞褶皱并塌陷,细胞表面变得粗糙等。傅里叶红外光谱(FT-IR)结果表明藻细胞表面的羧基、氨基和磷酸基团等官能团参与前期Pb2+的吸附沉淀。最终,通过一系列生化作用,微藻FZUL-321将离子态的Pb^(2+)矿化,X射线衍射(XRD)分析显示,矿化产物为Pb_5(PO_4)_3OH。 As the contributor to the primary productivity, alga plays an important role in biogeochemical cycles throughbioaccumulation and biomineralization of heavy metals. In this paper, we studied the removal and mineralization of Pb^(2+) using themicroalgae. The results show that the microalgae had a strong removal capacity for Pb^(2+) and it was a fast process. With the increasingconcentration of Pb^(2+), the removal of Pb^(2+) also increases. In the condition of weak acid(p H = 5.0), the removal of Pb^(2+)was better. Theremoval amount was 423.2×10^(-3) with the initial Pb^(2+)concentration of 100 mg/L, p H 5.0, and the contact time of 40 min. Atomic ForceMicroscope(AFM) results showed that the shape and size of the cell had been changed after the interaction with Pb^(2+) and the cellsurface became rough. Fourier Transform Infrared(FT-IR) revealed that cell surface functional groups, such as carboxyl, amido, andphosphonates, were involved in the removal of Pb^(2+). X-ray diffraction(XRD) pattern shows that, under the effect of microalgae, lead ionswere mineralized as Pb_5(PO_4)_3OH.
出处 《高校地质学报》 CAS CSCD 北大核心 2015年第4期608-615,共8页 Geological Journal of China Universities
基金 国家重点基础研究发展计划资助(973)项目(2014CB846003) 国家自然科学基金项目(41372346)联合资助
关键词 微藻 生物矿化 原子力显微镜 microalgae plumbum(Pb) biomineralization AFM
  • 相关文献

参考文献17

  • 1Runping Han,Hongkui Li,Yanhu Li,Jinghua Zhang,Huijun Xiao,Jie Shi.??Biosorption of copper and lead ions by waste beer yeast(J)Journal of Hazardous Materials . 2006 (3)
  • 2鲁安怀.生命活动中矿化作用的环境响应机制研究[J].高校地质学报,2007,13(4):613-620. 被引量:17
  • 3姜晶,李亮,李海鹏,李非里.蛋白核小球藻对Pb(Ⅱ)和Cd(Ⅱ)的生物吸附及其影响因素[J].生态学报,2012,32(7):1995-2003. 被引量:31
  • 4史家远,姚奇志,周根陶.硅藻细胞壁硅化过程中有机质-矿物的相互作用[J].高校地质学报,2011,17(1):76-85. 被引量:13
  • 5Tawfik A. Saleh,Vinod K. Gupta,Abdulaziz A. Al-Saadi.??Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study(J)Journal of Colloid And Interface Science . 2013
  • 6Olga M.M. Freitas,Ramiro J.E. Martins,Cristina M. Delerue-Matos,Rui A.R. Boaventura.??Removal of Cd(11), Zn(11) and Pb(11) from aqueous solutions by brown marine macro algae: Kinetic modelling(J)Journal of Hazardous Materials . 2007 (1)
  • 7E.L. Cochrane,S. Lu,S.W. Gibb,I. Villaescusa.??A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media(J)Journal of Hazardous Materials . 2006 (1)
  • 8Ping Xin Sheng,Yen-Peng Ting,J.Paul Chen,Liang Hong.??Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms(J)Journal of Colloid And Interface Science . 2004 (1)
  • 9O. Keskinkan,M.Z.L. Goksu,A. Yuceer,M. Basibuyuk,C.F. Forster.??Heavy metal adsorption characteristics of a submerged aquatic plant ( Myriophyllum spicatum )(J)Process Biochemistry . 2003 (2)
  • 10Guangyu Yan,Thiruvenkatachari Viraraghavan.??Heavy-metal removal from aqueous solution by fungus Mucor rouxii(J)Water Research . 2003 (18)

二级参考文献254

  • 1王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005,25(3):596-605. 被引量:203
  • 2鲁安怀.矿物法——环境污染治理的第四类方法[J].地学前缘,2005,12(1):196-205. 被引量:60
  • 3陈骏,姚素平.地质微生物学及其发展方向[J].高校地质学报,2005,11(2):154-166. 被引量:35
  • 4[1]Rees A P, Malcolm E, Woodward S, Robinson C, Cummings D G, Tarran G A, Joint Ⅰ. Size-fractionated nitrogen uptake and carbon fixation during a developing coccolithophore bloom in the North Sea during June 1999[J]. Deep-Sea Research Ⅱ,2002, 49(15): 2905-2927.
  • 5[4]Sunda W G, Huntsman S A. Processes regulating cellular metal accumulation and physiological effects: Phytoplankton as model systems[J]. The Science of the Total Environment,1998, 219:165-181.
  • 6[5]Hou Xiaolin, Yan Xiaojun. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae[J]. The Science of the Total Environment, 1998, 222:141-156.
  • 7[6]Fargasova A, Bumbalova A, Havranek E. Metal bioaccumulation by the freshwater alga Scenedesmus quadricauda [J].Journal of Radioanalytical and Nuclear Chemistry, 1997, 218(1): 107-110.
  • 8[7]Rainbow P S. Biomonitoring of heavy metal availability in the marine environment [J]. Marine Pollution Bulletin, 1995, 31:183-192.
  • 9[8]Wang W X, Dei R C H. Kinetic measurements of metal accumulation in two marine macroalgae [J]. Marine Biology,1999, 135: 11-23.
  • 10[9]Haritonidis S, Malea P. Bioaccumulation of metals by the green alga Ulva rigida from Thermaikos Gulf, Greece [J].Environmental Pollution, 1999, 104: 365-372.

共引文献156

同被引文献97

引证文献7

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部