期刊文献+

一种使用混合智能优化算法的图像增强方法 被引量:1

Image Enhancement Using Hybrid Intelligent Optimization
原文传递
导出
摘要 对比度增强在图像处理系统中常用来提高降质图像质量或增强图像细节。从优化问题的角度来处理图像增强,提出了用混合智能算法,结合细菌觅食优化算法和粒子群优化算法的优点,对图像增强算子的参数进行优化,使图像质量达到最佳。使用的增强算子取决于源图像的局部灰度信息和全局统计信息,采用的适应度函数是基于图像的边缘信息和熵信息。仿真和实验结果表明该方法不仅能实现图像对比度增强还能有效提高目标图像的细节,并有效抑制噪声。 Contrast enhancement is in common use to improve image quality or strengthen image details in degraded images because of its important role in image processing system.In this paper,from the point of optimization problem,a kind of hybrid intelligent algorithm that combined the advantage of bacteria foraging optimization algorithm and particle swarm optimization algorithm is proposed to deal with image enhancement,which could help to achieve the best image quality by optimizing parameters of image enhancement operator.The enhancement operator dependes on local gray level information and global statistics information of the source image,the fitness function based on edge information and entropy information of the image.The results of simulation and experiment show that after the application of this method not only contrast enhancement and details of target image are effectively improved,but also noise of image is effectively suppressed.
出处 《光学与光电技术》 2014年第6期4-8,共5页 Optics & Optoelectronic Technology
关键词 图像增强 智能优化 细菌觅食算法 粒子群优化 image enhancement intelligent optimization bacterial foraging algorithm particle swarm optimization
  • 相关文献

参考文献11

  • 1Bonabeau E,Dorigo M,Theraulaz G.Inspiration for optimization from social insect behavior. Nature . 2000
  • 2Huang Kaiqi,Wu Zhenyang,Wang Qiao.Image enhancement based on the statistics of visual representation[J]. Image and Vision Computing . 2004 (1)
  • 3刘春香,李洪祚.实时图像增强算法研究[J].中国光学与应用光学,2009,2(5):395-401. 被引量:11
  • 4N Kwok,Q Ha,D Liu,et al.Intensity-preserving contrast enhancement for gray-level images using multi objective particle swarm optimization. CASE06,IEEE International Conference on Automation Science and Engineering CASE . 2006
  • 5Dasgupta S,Biswas A,Abraham A,et al.Adaptive computational chemotaxis in bacterial foraging algorithm. International Conference on Complex,Intelligent and Software Intensive Systems . 2008
  • 6J. Kennedy,R. Mendes.Neighborhood topologies in fully informed and best-of-neighborhood particle swarms. IEEE Transactions on Systems Man and Cybernetics . 2006
  • 7孙海江,王延杰,刘伟宁.基于自适应平台阈值和拉普拉斯变换的红外图像增强[J].中国光学,2011,4(5):474-479. 被引量:20
  • 8徐枫,刘爱东,陈宏利.一种水下对空成像图像增强算法[J].光学与光电技术,2007,5(3):59-61. 被引量:4
  • 9Saitoh F.Image contrast enhancement using genetic algorithm. Proceedings of IEEE SMC’99 . 1999
  • 10R Gonzales,P Winter.Digital Image Processing. . 2007

二级参考文献33

共引文献32

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部