期刊文献+

正交多载波产生技术研究 被引量:1

Research on the Orthogonal Multi-Carrier Generation Technology
原文传递
导出
摘要 相干且频率锁定的正交多载波光源产生技术在光通信领域有着诸多应用,能广泛用于微波光子学、全光信号处理以及波分复用(WDM)技术和正交频分复用(OFDM)技术。互联网数据业务的快速增长使得超宽带大容量骨干网传输技术越来越受到世界各国的重视,而要实现Tb/s超大容量传输,目前使用的最主要的方法是光的波分复用(WDM)或正交频分复用(OFDM)技术。作为实现光WDM或OFDM的一项关键技术,相干和频率锁定的正交多波长光源技术引起了国内外各大科研机构的强烈关注。介绍了国内外多载波技术的现状以及多载波产生的多种方案,并对每一个方案进行了对比分析,为未来的研究提供了一些参考。 The generation of coherent frequency-locked orthogonal multi-carrier light source has many applications in the optical communication.It can be widely used in microwave photonics,all optical signal process,wavelength division multiplexing(WDM)and orthogonal frequency division multiplexing(OFDM).With the rapid growth of Internet broadband service,all countries of the world are paying more attention to the ultra-wideband and high-capacity backbone network transmission technology.Now the main way to realize Tb/s high-capacity transmission is using optical wavelength division multiplexing(WDM)or orthogonal frequency division multiplexing(OFDM).The technology of coherent frequency-locked multi-carrier light,as a key to realize optical WDM or OFDM,is becoming an attractive worldwide research topic.In this paper,the current situation of the technology of multi-carriers and some schemes of generation of multi-carriers and the comparison of all schemes are discussed to provide a reference for future researches.
出处 《光学与光电技术》 2015年第2期48-53,共6页 Optics & Optoelectronic Technology
基金 自然科学基金(61177071 61250018)资助项目
关键词 相干 频率锁定 多波长光源 波分复用 正交频分复用 超大容量传输 coherent frequency-locked multi-carrier light source wavelength division multiplexing(WDM) orthogonal frequency division multiplexing(OFDM) high-capacity transmission
  • 相关文献

参考文献10

  • 1Zhang, Junwen,Yu, Jianjun,Chi, Nan,Dong, Ze,Shao, Yufeng,Tao, Li,Li, Xinying.Theoretical and experimental study on improved frequency-locked multicarrier generation by using recirculating loop based on multifrequency shifting single-sideband modulation. IEEE Photonics Journal . 2012
  • 2邹书敏,王一光,邵宇丰,张俊文,余建军,迟楠.Generation of coherent optical multi-carriers using concatenated,dual-drive Mach-Zehnder and phase modulators[J].Chinese Optics Letters,2012,10(7):19-23. 被引量:2
  • 3Junwen Zhang,Jianjun Yu,Nan Chi.Improved Multicarriers Generation by Using Multifrequency Shifting Recirculating Loop. IEEE Photonics Technology Letters . 2012
  • 4Zhang, Junwen,Yu, Jianjun,Tao, Li,Fang, Yuan,Wang, Yiguang,Shao, Yufeng,Chi, Nan.Generation of coherent and frequency-lock optical subcarriers by cascading phase modulators driven by sinusoidal sources. Journal of Lightwave Technology . 2012
  • 5Li Jianping,Li Xuan,Zhang Xiaoguang,Tian Feng,Xi Lixia.Analysis of the stability and optimizing operation of the single-side-band modulator based on re-circulating frequency shifter used for the T-bit/s optical communication transmission. Optics Express . 2010
  • 6Yu,J.1.2Tbit/s orthogonal PDM-RZ-QPSK DWDM signal transmission over 1040km SMF-28. Electronics Letters . 2010
  • 7Zhang, Junwen,Yu, Jianjun,Chi, Nan,Dong, Ze,Li, Xinying,Shao, Yufeng,Tao, Li.Multichannel optical frequency-locked multicarrier source generation based on multichannel recirculation frequency shifter loop. Optics Letters . 2012
  • 8Junwen ZhangJianjun YuNan C.Stable Optical Frequency-Locked Multicarriers Generation by Double Recirculating Frequency Shifter Loops for Tb/s Communication. Journal of Lightwave Technology . 2012
  • 9Zhang Junwen,Chi Nan,Yu Jianjun,Shao Yufeng,Zhu Jiangbo,Huang Bo,Tao Li.Generation of coherent and frequency-lock multi-carriers using cascaded phase modulators and recirculating frequency shifter for Tb/s optical communication. Optics Express . 2011
  • 10Zhang Junwen,Yu Jianjun,Chi Nan,Dong Ze,Li Xinying,Chang G K.Improved multi-channel multi-carrier generation using gain-independent multi-channel frequency shifting recirculating loop. Optics Express . 2013

二级参考文献20

  • 1R. Dischler and F. Buchali, in Proceedings of 0FC2009 PDPC2 (2009).
  • 2J. Yu, Z. Dong, X. Xiao, Y. Xia, S. Shi, C. Ge, W. Zhou, N. Chi, and Y. Shao, in Proceedings of OFC 2011 PDPA6 (2011).
  • 3Y. Shao, N. Chi, C. Hou, W. Fang, J. Zhang, B. Huang, X. Li, S. Zou, X. Liu, X. Zheng, N. Zhang, Y. Fang, J. Zhu, L. Tao, and D. Huang, J. Lightwave Technol. 28, 1770 (2010).
  • 4Y. Shao, J. Zhang, W. Fang, S. Zou, X. Li, B. Huang, N. Chi, and S. Yu, Chin. Opt. Lett. 8, 894 (2010).
  • 5Y. Yang and J. Wang, IEEE Trans. Parallel Distr. Syst. 16, 51 (2005).
  • 6W. Idler, E. Lach, W. Kuebart, B. Junginger, K. Schuh, A. Klekamp, D. Werner, A. G. Steffan, A. Schippel, M. Schneiders, S. Vorbeck, and R. Braun, J. Lightwave Technol. 29, 2195 (2011).
  • 7J. Yu, X. Zhou, M. Huang, D. Qian, P. N. Ji, T. Wang, and P. Magill, Opt. Express 17, 17928 (2009).
  • 8Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, in Proceedings of 0FC2009 PDPC1 (2009).
  • 9J. Armstrong, J. Lightwave Technol. 27,189 (2009).
  • 10J. Yu, Electron. Lett. 46, 775 (2010).

共引文献1

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部