期刊文献+

具变系数的二阶中立型时滞差分方程的振动性 被引量:1

Oscillation Criteria of Second-order Neutral Delay Difference Equations with Variable Coefficients
下载PDF
导出
摘要 通过分析技巧,Riccati变换,研究了一类具变系数的二阶中立型时滞差分方程的振动性,给出了方程振动和解的一阶差分振动的充分条件,并举例说明. The oscillation of second order neutral delay difference equations with variable coefficients was studied by using averaging technique and Riccati transformation.Some sufficient conditions for oscillation of the equation and the first order difference of the solution were obtained,some examples were used to illustrate the results.
出处 《兰州文理学院学报(自然科学版)》 2014年第2期25-27,34,共4页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金 海南省教育厅基金(Hjkj2013-09)资助项目
关键词 二阶 中立型时滞差分方程 振动 second-order neutral delay difference equations oscillation
  • 相关文献

参考文献4

二级参考文献32

  • 1申建华.具有变系数的二阶中立型时滞差分方程[J].数学研究,1994,27(2):60-70. 被引量:37
  • 2张玉珠,燕居让.具有连续变量的差分方程振动性的判据[J].数学学报(中文版),1995,38(3):406-411. 被引量:75
  • 3申建华.具连续变量差分方程振动性的比较定理及应用[J].科学通报,1996,41(16):1441-1444. 被引量:49
  • 4Agarwal, R.P. Difference Equations and Inequalities, Theory, Methods and applications, Second Edition. Marcel Dekker, New York, 2000.
  • 5Agarwal, R.P., Bohner, M., Grace, S.R., O'Regan, D. Discrete Oscillation Theory. Hindawi Publishing ororation, New York, 2005.
  • 6Agarwal, R.P., Wong, P.J.Y. Advanced Topics in Difference Equations. Kluwer Academic Publishers, Dordrecht, 1997.
  • 7Hardy, G.H., Littlewood, J.E., Polya, G. Inequalities, Cambridge, 2nd Edition. Cambridge University Press, 1952.
  • 8Jiang, J.C. Oscillation criteria for second-order quasilinear neutral delay difference equations. Appl. Math. Comput., 125:287-293 (2002).
  • 9Li, W.T., Saker, S.H. Oscillation of second-order sublinear neutral delay difference equations. Appl. Math. Comput., 146:543-551 (2003).
  • 10Saker, S.H. Oscillation theorems for second-order nonlinear delay differenceequations. Periodiea Mathematica Hungarica, 47(1-2): 201-213 (2003).

共引文献21

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部