期刊文献+

一种小波树和非参数鉴别分析的人脸识别

Face Recognition Based on Wavelet Tree and Non-parametric Discriminant Algorithm
下载PDF
导出
摘要 结合小波树和子空间分析中的非参数鉴别分析,提出了基于小波树和非参数鉴别分析的人脸识别算法(WANDA).该算法先利用小波变换公式,在人脸图像上计算出一个小波近似分量和三个细节分量;然后对小波近似分量进行二次小波分解,相应地计算出各小波近似分量;其后对三层分解的小波近似系数进行重新组合,得到新的样本集;最后在此样本集上使用非参数鉴别方法进行人脸识别.ORL和CAS-PEAL-R1人脸库的实验结果表明,与基于线性非参数鉴别分析的人脸识别(NDA)和鉴别分析的人脸识别(LDA)方法相比较,WANDA方法的人脸识别率为97.5%,对光照条件、脸部表情变化有良好的鲁棒性. Face recognition is proposed based on wavelet tree and non-parametric discriminant analysis(WANDA),which combines with the wavelet tree and non-parametric discriminant analysis.The algorithm calculates a wavelet approximation coefficient and three detail components in face images with the help of the wavelet transform formula.Then the wavelet approximation coefficient decomposes two wavelets.Each wavelet approximation coefficients is calculated and three level of wavelet approximation coefficient are recombined.In the end,a new sample set is obtained and face recognition is completed by using non-parametric discriminant analysis.The simulation results of experiments on the ORL and CAS-PEAL-R1 face database show that compared face recognition based on linear nonparametric discriminant analysis(NDA)with face recognition based on linear discriminant analysis(LDA),the new algorithm has a high recognition rate of 97.5% and better robustness to illumination condition and face expression change.
作者 刘悦婷
出处 《兰州文理学院学报(自然科学版)》 2014年第6期35-39,共5页 Journal of Lanzhou University of Arts and Science(Natural Sciences)
基金 甘肃省自然科学基金项目(1112RJZA028)
关键词 小波树 非参数鉴别分析 人脸识别 小波变换 wavelet tree non-parametric discriminant analysis face recognition wavelet transform
  • 相关文献

参考文献3

二级参考文献26

  • 1董火明,高隽,汪荣贵.多分类器融合的人脸识别与身份认证[J].系统仿真学报,2004,16(8):1849-1853. 被引量:17
  • 2Zhao W,Chellappa R,Rosenfeld A,et al.Face recognition:A literature survey[J].ACM Computer Surveys,2003,35(4):399-458.
  • 3Wang X,Tang X O.A unified framework-for subspaee face recognition[J].IEEE Trans on Pattern Anal Maeh Intell,2004,26(9): 1222-1228.
  • 4Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience, 1991,3( 1 ) :72-86.
  • 5Sung K,Poggio T.Example-based learning for view-based human face deteetion[J].IEEE Trans on Pattern Anal Maeh Intell,1998,20 (1):39-51.
  • 6Yang J,Zhang D,Frangi A,et al.Two-dimensional PCA:A new approach to appearance-based face representation and recognition[J]. IEEE Trans on Pattern Anal Mach Intell,2004,26(1):131-137.
  • 7Kirby M, Sirovich L.Application of the KL procedure for the characterization of human faces[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1990,12( 1 ) : 103-108.
  • 8Turk M,Pentland A.Eigenfaces for recognition[J].Cognitive Neuroscience, 1991,3(1 ) :71-86.
  • 9Yang M H.Kernel eigenfaces vs Kernel fisherfaces:Face recogni- tion using Kernel methods[C]//IEEE Conference Automatic Face and Gesture Recognition(AFGR), 2002: 215-220.
  • 10Gottumukkal R,Asari V K.An improved face recognition technique based on modular PCA approach[J].Pattem Recognition Letter,2004, 25(4) :429-436.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部