期刊文献+

马氏珠母贝TOR基因cDNA的克隆与组织表达分析 被引量:1

Cloning and Expression of TOR Gene from Pinctada martensii
原文传递
导出
摘要 TOR(target of rapamycin)是一类进化上非常保守的蛋白激酶,参与调节多种生化代谢,协调蛋白质的生物合成和降解。本研究采用c DNA末端快速扩增技术(RACE),克隆获得了马氏珠母贝TOR基因c DNA全长序列(pm-TOR);同时利用荧光定量技术检测了pm-TOR基因m RNA在马氏珠母贝各个组织中的表达含量。结果表明:pm-TOR基因c DNA序列全长9 220 bp,开放阅读框(ORF)长7 488 bp,编码2 495个氨基酸,5'非翻译区(5'UTR)长157 bp,3'UTR长1 575 bp。氨基酸序列同源比对分析显示pm-TOR氨基酸序列与其他物种具有较高的保守性,与牡蛎(Crassostrea gigas)的TOR的序列相似度为79%。荧光定量PCR数据分析显示,TOR基因的m RNA在马氏珠母贝血液、性腺、肝胰脏、外套膜、闭壳肌和鳃组织中均有表达,其中肝胰脏和性腺中表达量较高,血液中表达量较低。本研究为进一步阐述TOR在马氏珠母贝中生长和发育调控中的作用提供理论基础。 TOR(target of rapamycin) is an evolutionarily conserved protein that plays a crucial role in the biochemical metabolism and protein synthesis. In this study, using rapid amplification of c DNA ends technology(RACE), the full length of TOR gene was obtained from Pinctada martensii(pm-TOR); and Real-time PCR was used to detect the tissue-specific expression of TOR in Pinctada martensii. The results showed that the obtained full length of pm-TOR c DNA was 9 220 bp, containing an open reading frame(ORF) of 7 488 bp encoding 2 495 amino acid residues. The a 5' untranslated region(5' UTR) was 157 bp and the 3' UTR was 1 575 bp. Multiple sequence alignment indicated that TOR be highly conservative among species and TOR had 79% sequence identity with that from Crassostrea gigas. Quantitative real-time PCR analysis demonstrated that pm-TOR m RNA was constitutively expressed in hemocyte, gonad, hepatopancreas, mantle, adductor muscle and gill. The pm-TOR m RNA expression level was highly in hepatopancreas, gonad, lowly in hemocyte. These studies might provide the basis for the further study of the function of pm-TOR in growth and development in Pinctada martensii.
出处 《基因组学与应用生物学》 CAS CSCD 北大核心 2014年第6期1228-1235,共8页 Genomics and Applied Biology
基金 国家自然科学基金(31272635 41206141 31372526) 广东省自然科学基金(S2012040008042) 广东省教育厅育苗工程(2012LYM_0074) 广东海洋大学博士启动项目(1212318)共同资助
关键词 马氏珠母贝 TOR基因 基因克隆 REAL-TIME PCR Pinctada martensii,TOR gene,Gene clone,Real-time PCR
  • 相关文献

同被引文献24

  • 1Aigner T., Gresk-otter K.R., Fairbank J.C., von der Mark K., and Urban J.P., 1998, Variation with age in the pattern of type X collagen expression in normal and scoliotic human interver- tebral discs, Calcified Tissue International, 63(3): 263-268.
  • 2Alvarez J., Balbin M., Santos F., Fernandez M., Ferrando S., and L6pez J.M., 2000, Different bone growth rates are associated with changes inthe expression pattern of types II and X col- lagens and collagenase 3 inproximal growth plates of the rat tibia, Joumal of Bone Mineral Research, 15(1): 82-94.
  • 3Bailey A.J., Wotton S.F., Sims T.J., and Thompson P.W., 1993, Biological changes in the collagen of human osteoporotic bone matrix, Connective Tissue Research, 29:119-132.
  • 4Beniash E., 2011, Biominerals-hierarchical nanocomposites: the example of bone, Wiley Interdiscip Rev. Nanomed Nano- biotechnol, 3(1): 47-69.
  • 5Bruns R.R., Press W., Engvall E., Timpl R., and Gross J., 1986, Type VI collagen in extracellular, 100 nm periodic filaments and fibrils: identification by immunoelectron microscopy, Journal of Molecular Cell Biology, 103(2): 393-404.
  • 6Drake J.L., Mass T., Haramaty L., Zelzion E., Bhattacharya D., and Falkowski P.G., 2013, Proteomic analysis of skeletal or- ganic matrixfrom the stony coral Stylophora pi.~tillata, Proc. Natl. Acad. Sci. USA, 110(10): 3788-3793.
  • 7Funabara D., Ohmori F., Kinoshita S., Koyama H., Mizutani S., Ota A., Osakabe Y., Nagai K., Maeyama K., Okamoto K., Kanoh S., Asakawa S., and Watabe S., 2014, Novel genes participating in the formation of prismatic and nacreous lay- ers in the pearl oyster as revealed by their tissue distribution and RNA interference knockdown, PloS One, 9(1): e84706.
  • 8Gara S.K., Grumati P., Urciuolo A., Bonaldo P., Kobbe B., Koch M., Paulsson M., and Wagener R., 2008, Three novel colla- gen VI chains with high homology to the alpha3 chain, Jour- nal of Biological Chemistry, 283(16): 10658-10670.
  • 9Hjorten R., Hansen U., Underwood R.A., Teller H.E., Fernandes R.J., Krakow D., Sebald E., Wachsmann-Hogiu S., Bruckn- er P., Jacquet R., Landis W.J., Byers P.H., and Pace J.M., 2007, Type X X VII collagen at the transition of cartilageto bone during skeletogenesis, Bone, 41 (4): 535-542.
  • 10Ishibashi H., Harumiya S., and Koshihara Y., 1999, Involvement of type VI collagen in interleukin-4-induced mineralization by human osteoblast-like cells in vitro, Biochimica Et Bio- physica Acta, 1472(1-2): 153-164.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部