期刊文献+

SAR影像极化特征的混合高斯模型与分类 被引量:5

Gaussian Mixture Model and Classification of Polarimetric Features for SAR Images
原文传递
导出
摘要 针对高分辨率极化合成孔径雷达(SAR)影像中极化特征呈现尖峰拖尾等复杂多样的统计特点,采用混合高斯模型(GMM)对极化特征进行建模,提出了一种约束距离的混合多元高斯分布的参数估计算法。该参数估计算法在贪婪期望最大算法框架下设计约束距离函数,自动估计混合分量的个数和模型参数,进而在贝叶斯框架下实现极化SAR影像的地物分类。对Radarsat-2旧金山等地区三组影像数据的分类结果表明:相比于经典的分类算法,所提GMM分类算法的总体精度提高了7%~10%,且对样本数目的依赖性更小,在城区和耕地区域等异质区域可以得到精度更高的分类结果。 Aiming at the various statistical characteristics such as peak tailing presented in the high-resolution synthetic aperture radar(SAR) images, we model the polarimetric features according to the Gaussian mixture model(GMM) and come up with a constrained distance estimation algorithm for the parameters of multivariate Gaussian mixture distribution. Under the framework of greedy expectation maximum algorithm, a constraint distance function is designed and the number of mixed components and model parameters are automatically estimated in this parameter estimation algorithm. Consequently the classification of polarimetric SAR images is realized under the Bayesian framework. The classification results of three groups of image data from Radarsat-2 in San Francisco and other places indicate that the proposed GMM classification algorithm possesses an overall accuracy higher by 7 %-10 % comparing with those by the classical classification algorithms. Moreover, its dependence on sample number is small. The more accurate classification results can be obtained in heterogeneous regions such as urban and farmland.
作者 李珞茹 徐新 董浩 桂容 谢欣芳 Li Luoru;Xu Xin;Dong Hao;Gui Rong;Xie Xinfang(School of Electronic Information,Wuhan University,Wuhan,Hubei 430072,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2019年第1期458-467,共10页 Acta Optica Sinica
基金 国家重点研发计划(2016YFB0502601) 高分辨率对地观测重大专项技术研究与开发(03-Y20A10-9001-15/16)
关键词 遥感 混合高斯模型 统计分布 合成孔径雷达 参数估计 remote sensing Gaussian mixture model statistical distribution synthetic aperture radar parameter estimation
  • 相关文献

参考文献5

二级参考文献42

  • 1费鲜芸,王婷,魏雪丽.基于多尺度分割的遥感影像滨海湿地分类[J].遥感技术与应用,2015,30(2):298-303. 被引量:19
  • 2韩震,金亚秋.ERS-2 SAR和Landsat ETM+数据融合提取崇明东滩典型地物信息与分类[J].海洋环境科学,2006,25(3):21-24. 被引量:9
  • 3Figueiredo M A T,Jain A K. Unsupervised learning of finite mixture models [ J ]. IEEE Trans Pattern Analysis and Machine Intelligence ,2002,24 ( 3 ) :381-396.
  • 4McLachlan G J, Peel D. Finite mixture models [ M ]. New York :Wiley, 2000:5-7.
  • 5Dempster A P, Laird N M, Rubin D B. Maximum likelihood estimation from incomplete data via the EM algorithm [ J ]. J Royal Statistical Soc B, 1977,39( 1 ) : 1-38.
  • 6McLachlan G J, Krishnan T. The EM algorithm and extensions [ M ]. New York : Wiley, 1997:4-19.
  • 7Akaike H. A new look at statistical model identification [ J ]. IEEE Trans on Automatic Control, 1974,19 (6) : 716 -723.
  • 8Wang H X, Luo B,Zhang Q B,et al. Estimation for the number of components in a mixture model using stepwise split-and-merge EM algorithm [ J ]. Pattern Recognition Letters, 2004,25 (16) : 1799-1 809.
  • 9Vlassis N, Likas A. A Greedy EM algorithm for Gaussian mixture learning [ J]. Neural Processing Letters, 2002, 15(1) :77-87.
  • 10Verbeek J J, Vlassis N, Krose B. Efficient Greedy learning of Gaussian mixture models [ J ]. Neural Computation, 2003,5 (2) :469-485.

共引文献50

同被引文献51

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部