期刊文献+

基于r-ADMM算法的轴向超分辨荧光显微技术研究 被引量:2

Axial Super-Resolution Fluorescence Microscopy Imaging Technology Based on r-ADMM Algorithm
原文传递
导出
摘要 多角度全内反射荧光显微镜层析成像技术是实现轴向超分辨的主要技术之一,其关键算法是基于交替方向乘子算法对逆问题模型求解。为进一步提高交替方向乘子算法的迭代速度及收敛性,提出将一种基于松弛因子的改进型交替方向乘子算法应用于逆问题的求解中,其核心思想是对拉格朗日函数的分解迭代过程进行过松弛求解。基于该算法,搭建了多角度全内反射荧光显微镜成像系统,采集不同照明角度对应的不同穿透深度的图像堆栈,利用改进型算法重构细胞微管的深度信息,给出了系统的轴向分辨率,并与传统交替方向乘子算法进行了收敛速度的对比,给出了改进型算法达到最优收敛的松弛因子的取值范围,最后通过对线粒体样品进行长时程拍摄,重构了其三维信息,并观测了其融合和裂变的连续过程。实验结果表明,改进型交替方向乘子算法可以实现40 nm的轴向分辨率,并能在保证图像重构质量的同时,使迭代过程的收敛速度提升20%以上。 The multi-angle total internal reflection fluorescence microscopy tomography imaging technology is one of the main techniques for achieving the axial super resolution. The key algorithm is to solve the inverse problem based on the alternating direction multiplier algorithm. In order to further improve the iterative speed and convergence of the alternating direction multiplier algorithm, we propose an improved alternating direction multiplier algorithm based on relaxation factors, which is used for the solution of the inverse problems and whose core idea is to solve the relaxation process of the Lagrangian function decomposition iterative process. Based on the proposed algorithm, the multi-angle total internal reflection fluorescence microscopy imaging system is built. The image stacks with different penetration depths corresponding to different illumination angles are acquired. Then the depth information of cell microtubules is reconstructed using the improved algorithm, and the axial resolution of the system is also given. Moreover, the convergence speed comparison of the improved algorithm with the traditional alternating direction multiplier algorithm is accomplished and the range of relaxation factors for the improved algorithm to achieve the optimal convergence is also given. Finally, the three-dimensional information of mitochondrial samples is reconstructed by long time photographing, and the consecutive processes of fusion and fission are observed. The experimental results show that the improved alternating direction multiplier algorithm can be used to achieve an axial resolution of 40 nm. Moreover, the convergence speed of the iterative process is improved by more than 20% when the image reconstruction quality is ensured.
作者 李金瑜 陈友华 韩伟 尚禹 桂志国 Li Jinyu;Chen Youhua;Han Wei;Shang Yu;Gui Zhiguo(Engineering Technology Research Center of Shanxi Province for Opto-Electronic Information and Instrument,North University of China,Taiyuan,Shanxi 030051,China;Shanxi Provincial Key Laboratory for Biomedical Imaging and Big Data,North University of China,Taiyuan,Shanxi 030051,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2019年第2期324-332,共9页 Acta Optica Sinica
基金 国家自然科学基金(61505179) 山西省自然科学基金(201601D021079)
关键词 显微 全内反射荧光显微镜 交替方向乘子算法 轴向超分辨率 逆问题求解 microscopy total internal reflection fluorescence microscopy alternating direction multiplier algorithm axial super-resolution inverse problem solving
  • 相关文献

参考文献3

二级参考文献37

  • 1Berry M W,Browne M,Langville A N,Pauca V P Plemmons R J. Algorithms andapplications for approximate nonnegative matrix factorization[J].Computational Statistics and Data Analysis,2007,(01):155-173.
  • 2Bertsekas D P,Tsitsiklis J N. Parallel and Distributed Computation: Numerical Methods[M].Upper Saddle River:Prentice-Hall,Inc,1989.
  • 3Biswas P,Lian T C,Wang T C,Ye Y. Semidefinite programming based algorithms for sensor network (l)ocalization[J].ACM Transactions on Sensor Networks,2006,(02):188-220.
  • 4Cai J F,Candes E J,Shen Z. A singular value thresholding algorithm for matrix completion export[J].SIAM Journal on Optimization,2010.1956-1982.
  • 5Candès E J,Li X,Ma Y,Wright J. Robust principal component analysis[J].Journal of the ACM,2011,(03):11.
  • 6Candès E J,Recht B. Exact matrix completion via convex optimization[J].Foundations of Computational Mathematics,2009,(06):717-772.doi:10.1007/s10208-009-9045-5.
  • 7Candès E J,Tao T. The power of convex relaxation:Near-optimal matrix completion[J].IEEE Transactions on Information theory,2010,(05):2053-2080.
  • 8Cichocki A,Morup M,Smaragdis P,Wang W,Zdunek R. Advances in Nonnegative Matrix and Tensor Factorization[A].New York:Hindawi Publishing Corporation,2008.
  • 9Cichocki A,Zdunek R,Phan A H,Amari S. Nonnegative Matrix and Tensor Factorizations—Applications to Exploratory Multiway Data Analysis and Blind Source Separation[M].Hoboken:John Wiley & Sons,Ltd,2009.
  • 10Fazel M. Matrix Rank Minimization with Applications[D].Stanford University,2002.

共引文献44

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部