期刊文献+

基于断裂面特征点匹配的文物碎片重组方法 被引量:3

Reassembly Method of Cultural Relics Based on Feature Point Matching of Fracture Surface
原文传递
导出
摘要 在计算机辅助文物虚拟复原过程中,针对现有复原方法匹配精度低、速度慢等问题,提出一种新的基于断裂面特征点匹配的文物碎片重组方法。利用改进的内部形状签名法提取碎片断裂面潜在特征点;计算特征点邻域几何特征的协方差矩阵,从而构建特征描述符;采用对数欧氏黎曼度量方法作为相似性度量准则,通过双向最近邻法获得初始点对集合,再利用典型相关分析法消除误匹配对得到最优匹配集;使用最小二乘法估算刚体变换矩阵将碎片粗对齐,再采用迭代最近点算法实现精确对齐,最终实现碎片重组。实验结果表明,本文算法相对传统算法特征点数量少,描述符简单,且稳健性强,有效提高了碎片重组的效率和准确性。 Existing restoration methods perform virtual restoration of computer-aided cultural relics with low accuracy and speed.To address this issue,a new reassembly method of cultural relics based on feature Point matching of fracture surface is proposed.First,the improved internal shape signature method is used to extract potential feature points of fragment fracture surfaces.Then,the covariance matrix of geometric features of adjacent feature points is calculated to construct feature descriptors.The logarithmic Euclidean Riemann method is then used as the similarity measure criterion,and the initial point pair set is obtained based on the bidirectional nearest neighbor method.The optimal matching set is obtained by eliminating mismatching pairs based on the canonical correlation analysis method.Finally,the least square method is used to calculate the rigid body transformation matrix to align the fragments and the iterative closest point algorithm is used to achieve precise alignment,thereby realizing fragment reassembly.Experimental results show that the proposed algorithm has fewer feature points compared with traditional algorithms;the descriptor is simple and robust,which effectively improves the efficiency and accuracy of fragment reassembly.
作者 胡佳贝 周蓬勃 耿国华 张勇杰 杨稳 陆正杰 Hu Jiabei;Zhou Pengbo;Geng Guohua;Zhang Yongjie;Yang Wen;Lu Zhengjie(School of Information Science and Technology,Northwest University,Xi’an,Shaanxi 710127,China;School of Arts and Communication,Beijing Normal University,Beijing 100875,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2019年第9期245-252,共8页 Acta Optica Sinica
基金 国家自然科学基金青年基金(61802311、61602380) 国家自然科学基金重点项目(61731015) 国家自然科学基金面上项目(61673319) 国家重点研发计划(2017YFB1402103) 陕西省教育厅自然科学专项(18JK0795) 陕西省产业创新链项目(2016TZC-G-3-5) 青岛市自主创新重大专项(2017-4-3-2-xcl) 陕西省自然科学基金(2018JM6029) 陕西省重点研发计划一般项目(2019SF-272)
关键词 机器视觉 碎片重组 特征点提取 协方差描述符 迭代最近点 machine vision fragment reassembly feature point extraction covariance descriptor iterative closest point
  • 相关文献

参考文献4

二级参考文献34

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:100
  • 2张学昌,习俊通,严隽琪.基于点云数据的复杂型面数字化检测技术研究[J].计算机集成制造系统,2005,11(5):727-731. 被引量:27
  • 3樊少荣,茹少峰,周明全,耿国华.破碎刚体三角网格曲面模型的特征轮廓线提取方法[J].计算机辅助设计与图形学学报,2005,17(9):2003-2009. 被引量:17
  • 4张小洪,雷明,杨丹.基于多尺度曲率乘积的鲁棒图像角点检测[J].中国图象图形学报,2007,12(7):1270-1275. 被引量:21
  • 5Shih J L,Chen H Y.A 3D model retrieval approach using the interior and exterior 3D shape information[J].Multimedia Tools and Applications,2009,43(1):45-62.
  • 6Sunkel M,Jansen S,Wand M,etal.Learning line features in 3D geometry[J].Computer Graphics Forum,2011,30(2):267-276.
  • 7Berner A,Wand M,Mitra N J,et al.Shape analysis with subspace symmetries[J].Computer Graphics Forum,2011,30(2):277-286.
  • 8Cohen F,Liu Z X,Ezgi T.Virtual reconstruction of archaeological vessels using expert priors and intrinsic differential geometry information[J].Computers & Graphics,2012,37(1/2):41-53.
  • 9Yang Y L,Lai Y K,Hu S M,et al.Robust principal curvatures on multiple scales[C]//Proceedings of the 4th Eurographics Symposium on Geometry Processing.Aire-la-Ville:Eurographics Association Press,2006:223-226.
  • 10Merigot Q,Ovsjanikov M,Guibas L J.Voronoi-based curvature and feature estimation from point clouds[J].IEEE Transactions on Visualization and Computer Graphics,2011,17(6):743-756.

共引文献90

同被引文献35

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部