期刊文献+

碳化硅晶须改性反应烧结碳化硅陶瓷的显微结构及性能 被引量:5

Microstructure and Mechanical Behavior of Reaction Bonded Silicon Carbide Ceramics Modified with SiC Whisker
原文传递
导出
摘要 以碳化硅晶须为增强体、碳化硅--碳为基体制备晶须增强反应烧结碳化硅复合材料,研究了碳化硅晶须、碳含量对复合材料显微结构与性能的影响。结果表明:碳化硅晶须经高温反应烧结后仍保持表面的竹节结构,且晶须增强体与反应烧结碳化硅基体间形成适中的界面结合强度;材料断口处有明显的晶须拔出,当碳黑含量为6%(质量分数)时,随着晶须含量的增加,材料的抗弯强度从200MPa提高到310MPa(晶须含量15%),当碳黑含量为18%时,随着晶须含量的增加,材料断裂韧性从3.3MPa·m1/2提高到4.3MPa·m1/2;碳化硅晶须含量过高时,晶须的"搭桥"效应导致材料中含有较多的游离硅,限制了材料力学性能进一步提高;微氧化处理使材料表面形成致密、均匀的氧化膜,可显著提高反应烧结碳化硅的抗弯强度和断裂韧性。 A composite of reaction bonded silicon carbide(RBSC)reinforced with silicon carbide whisker was prepared.The effects of the whisker and carbon on the microstructure and mechanical behavior were investigated.The whisker maintains the burl profile on the surface after reactive sintering.Some whisker pullouts occur on the fracture surface,indicating an appropriate bonding strength between the whisker and the RBSC matrix.For the composite with 6%(mass fraction)of carbon,the flexural strength increases from 200 MPa to 310 MPa at a whisker fraction of 15%,and for the composite with 18% of carbon,the fracture toughness increases from 3.3MPa·m1/2 to 4.3MPa·m1/2 at a whisker fraction of 20%.Some pores in the green body appear when the whisker fraction further increases due to the bridging effect of whisker,giving rise to residual silicon in the sintered body.A protective film is formed on the material surface due to mild oxidation in ambient air.The flexural strength and fracture toughness both are improved in the presence of this film.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2014年第12期1520-1527,共8页 Journal of The Chinese Ceramic Society
关键词 反应烧结 晶须 力学性能 游离硅 氧化 reactive sintering whisker mechanical properties residual silicon oxidation
  • 相关文献

参考文献11

  • 1岳建设,王红洁,乔冠军.反应烧结制备多孔β-SiAlON(英文)[J].硅酸盐学报,2012,40(4):489-492. 被引量:3
  • 2Shuang Li,Yumin Zhang,Jiecai Han,Yufeng Zhou.Effect of carbon particle and carbon fiber on the microstructure and mechanical properties of short fiber reinforced reaction bonded silicon carbide composite[J].Journal of the European Ceramic Society.2013(4)
  • 3Yumin Zhang,Shuang Li,Jiecai Han,Yufeng Zhou.Fabrication and characterization of random chopped fiber reinforced reaction bonded silicon carbide composite[J].Ceramics International.2011(2)
  • 4Jiwang Yan,Zhiyu Zhang,Tsunemoto Kuriyagawa.Mechanism for material removal in diamond turning of reaction-bonded silicon carbide[J].International Journal of Machine Tools and Manufacture.2009(5)
  • 5Jesse C. Margiotta,Dajie Zhang,Dennis C. Nagle.Microstructural evolution during silicon carbide (SiC) formation by liquid silicon infiltration using optical microscopy[J].International Journal of Refractory Metals and Hard Materials.2009(2)
  • 6Xiulan He,Yingkui Guo,Yu Zhou,Dechang Jia.Microstructures of short-carbon-fiber-reinforced SiC composites prepared by hot-pressing[J].Materials Characterization.2008(12)
  • 7A.G. Odeshi,H. Mucha,B. Wielage.Manufacture and characterisation of a low cost carbon fibre reinforced C/SiC dual matrix composite[J].Carbon.2006(10)
  • 8A. Lemarchand,J.P. Bonnet.Modelling silicon carbide formation during heating at constant rate[J].Journal of the European Ceramic Society.2005(12)
  • 9Sung-Hee Lee,Young-Il Lee,Young-Wook Kim,Rong-Jun Xie,Mamoru Mitomo,Guo-Dong Zhan.Mechanical properties of hot-forged silicon carbide ceramics[J].Scripta Materialia.2004(2)
  • 10Xiao Feng Zhang,Qing Yang,Lutgard C. De Jonghe.Microstructure development in hot-pressed silicon carbide: effects of aluminum, boron, and carbon additives[J].Acta Materialia.2003(13)

二级参考文献11

  • 1EKSTR M T,NYGREN M.SiAlON ceramics[J].J Am Ceram Soc,1992,75(2):259–276.
  • 2TSENG W J,KITA H.As-fired strength of sintered silicon nitrideceramics[J].Ceram Int,2000,26:197–202.
  • 3LEE B T,YOO J H,KIM H D.Effect of sintering additives on thenitridation behavior of reaction-bonded silicon nitride[J].Mater SciEng A,2002,333:306–313.
  • 4XU Jie,LUO Fa,ZHU Dongmei,et al.Effect of presintering on thedielectric and mechanical properties of porous reaction-bonded siliconnitride[J].Mater Sci Eng A,2008,488:167–171.
  • 5TUYEN D V,PARK Y J,KIM H D,et al.Formation of rod-like Si3N4grains in porous SRBSN bodies using 6Y2O3–2MgO sintering addi-tives[J].Ceram Int,2009,35:2305–2310.
  • 6HYUGA H,YOSHIDA K,KONDO N.et al.Fabrication of pressure-less sintered denseβ-SiAlON via a reaction-bonding route with ZrO2addition[J].Ceram Int,2009,35:1927–1932.
  • 7XU Xin,FU Renli,CHEN Kexin.et al.Cost-effective fabrication ofporousα-SiAlON bondedβ-SiAlON ceramics[J].Mater Lett,2005,59:2601–2604.
  • 8HE Enquan,YUE Jianshe,Fan Lei,et al.Synthesis of single phaseβ-SiAlON ceramics by reaction-bonded sintering using Si and Al2O3asraw materials[J].Scri Mater,2011,65:155–158.
  • 9RILEY F L.Silicon nitride and related materials[J].J Am Ceram Soc,2000,83(2):245–265.
  • 10KAGA Y,JONES M I,HIRAO K,et al,Fabrication of elongatedα-SiAlON via a reaction-bonding process[J].J Am Ceram Soc,2004,87(5):956–959.

共引文献2

同被引文献24

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部