期刊文献+

锂离子电池硅/石墨烯负极材料的电化学性能 被引量:13

Electrochemical Performance of Silicon/Graphene Nanocomposites Anode Materials for Lithium-ion Batteries
原文传递
导出
摘要 采用高能球磨法制备了纳米硅/石墨烯(Si@G)复合锂离子电池负极材料,并研究了高能球磨时间对Si@G复合材料成分和电化学性能的影响。X射线衍射分析结果表明:球磨40 min后,产物中出现少量电化学惰性的碳化硅。球磨20 min的Si@G复合材料具有最高的首次放电比容量(3 418 mA?h/g)和首次Coulomb效率(89%),但其充放电循环稳定性较差,放电比容量在33次充放电后即衰减为首次的80%。而球磨40 min的Si@G复合材料,充放电84次后,其容量保持率仍为80%。表明没有储锂容量的杂质相SiC虽然导致Si@G负极材料的首次充放电比容量下降,但有利于提高充放电循环稳定性。 Silicon/graphene composites(Si@G)anode materials for lithium-ion battery were prepared via high-energy ball milling.The effect of milling time on the composition and electrochemical performance of Si@G composites was investigated.Based on the analysis by X-ray diffraction,a small amount of electrochemically inert silicon carbide(SiC)is formed at milling time of 40 min.The Si@G composite produced by miling for 20 min has the optimum initial specific discharge capacity(i.e.,3 418 m A?h/g)and the first coulombic efficiency(i.e.,89%),with 80%of the initial specific discharge capacity retained after 33 charge–discharge cycles.The Si@G composite produced by milling for 40 min is charged and discharged for 84 times,and its capacity retention rate is still 80%.This indicates that SiC shows no lithium storage capacity,resulting in a decrease in the first specific charge–discharge capacity.However,SiC can improve the cycling stability of Si@G composite anode materials.
作者 肖思 谢旭佳 谢雍基 刘斌 刘丹 施志聪 XIAO Si;XIE Xujia;XIE Yongji;LIU Bin;LIU Dan;SHI Zhicong(Guangdong University of Technology,School of Materials and Energy,Guangzhou510000,China;Guangdong Engineering Technology Research Center for New Energy Materials and Devices,Guangzhou510000,China;Dynavolt Tech,Shantou515000,Guangdong,China)
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2019年第9期1327-1334,共8页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金重点项目(21673051) 广东省科技厅产学研重大专项(2017B010119003)
关键词 锂离子电池 负极材料 硅–石墨烯复合材料 高能球磨 lithium ion battery anode material silicon–graphene composite high energy ball mill
  • 相关文献

参考文献6

二级参考文献42

  • 1Xu, S. D.; Zhuang, Q. C.; Tian, L. L.; Qin, Y. E; Fang, L.; Sun, S. G. J. Phys. Chem. C 2011, 115(18), 9210.
  • 2Dimov, N.; Kugino, S.; Yoshio, M. Electrochim. Acta 2003, 48, 1579.
  • 3Khomenko, V. G.; Barsukov, V. Z. Electrochim. Acta 2007, 52, 2829.
  • 4Weydanz, W. J.; Wohlfahrt-Mehrens, M.; Huggins, R. A. J. Power Sources 1999, 81-82, 237.
  • 5Holzapfel, M.; Buqa, H.; Hardwick, L. J.; Hahn, M.; Wur- sig, A.; Scheifele, W.; Novak, P.; Kotz, R.; Veit, C.; Petrat, E M. Electrochim. Acta 2006, 52, 973.
  • 6Zhang, J. G.; Liu, J.; Wang, D. H.; Choi, D.; Fifield, L. S.; Wang, C. M.; Xia, G.; Nie, Z.; Yang, Z. G.; Pederson, L. R.; Graft, G J. Power Sources 2010, 196, 1691.
  • 7Zuo, P. J.; Yin, G. E; Ma, Y. L. Electrochim. Acta 2007, 52, 4878.
  • 8Seong, W.; Yoon, W. Y. J. Power Sources 2010, 195, 6143.
  • 9Datta, M. K.; Kumta, E N. J. Power Sources 2009, 194, 1043.
  • 10Cui, L. F.; Ruffo, R.; Chan, C. K.; Pen, H. L.; Cui, Y. Nano Lett. 2009, 9(1), 491.

共引文献26

同被引文献103

引证文献13

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部