期刊文献+

模糊聚类方法在电力系统中的应用

A Fuzzy Clustering Using in Electric Power System
下载PDF
导出
摘要 电力负荷预测是电力系统调度、用电、计划和规划等管理部门的重要工作。本文采用模糊推理预测方法进行负荷预测的研究 ,该方法是基于模糊聚类对输入变量进行有效模糊划分 ,并通过递推最小二乘辨识模糊模型的结论参数。采用该方法对某供电企业电力系统进行建模研究 ,取得了满意的效果。 Electric load forecasting is an important work of power system to adjust,electing,plan and layout.This paper adopts a fuzzy inference forecasting method to research load forecasting.Based on fuzzy clustering,this method effectively plot out input data,and via recursive least square identified fuzzy modeling conclusion parameter The proposed model is tested using date of Hangang power system while load forecasts with satisfying accuracy are reported.
出处 《机床电器》 2002年第6期42-44,共3页 Machine Tool Electric Apparatus
关键词 电力系统 模糊聚类 递推最小二乘 负荷预测 Electric power system Fuzzy clustering Recursive least square Load forecasting
  • 相关文献

参考文献12

  • 1R. Campo and P. Ruiz. Adaptive weather - sensitive short-time load forecasting[J] .IEEE Transactions on Power System, 1989,Vol. PWRS - 2
  • 2V. S. Kodogiannis and E. M. Anagnostakis. A study of advanced learning algorithms for short - time load forecasting[J]. Engineering Applications of Artificial Intelligence 1999,12:159-173
  • 3Martin. T. Hagan and Suzanne. M. Behr. The time series approach to short time load forecasting[J].IEEE Transactions on Power Systems, 1987, Vol. PWRS - 2
  • 4Tawfuq Al-Saba and Ibrahim EI-Amin. Artificial neural networks as applied to long- time demand forecasting[J].Artificial Intelligence in Engineering 1999, 13:189- 197
  • 5P. A. Mastorocostas, J. B. Theocharis, S. J. Kiartzis and A.G.Bakirtzis. A hybrid fuzzy modeling method for short -time load forecasting [J]. Mathematic and Computers insimulation, 2000,51: 221-232
  • 6Dipti Srinivasan. Evolving artificial neural networks for short time load forecasting [J]. Neurocomputing 1998,23:265-276
  • 7Liang wang. Complex systems modeling via fuzzy lobgic IEEE Trans on System, Man & Cybernet [J]. 1996, 26(1):100-106
  • 8Bezdek J. C. Patten recognition with fuzzy objective function algorithms New York: Dlenum Press. 1981
  • 9Takagi T, Sugeno M .Fuzzy identification of system and its applications to modeling and control [J]. IEEE Trans on System. Man & Cybernet, 1985,15(1): 16-32
  • 10A. F. Gomez - Skarmeta et al., About the of fuzzy clustering techniques for fuzzy model identification [J]. Fuzzy Sets and Systems, 1999, 106:179-188

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部