摘要
为了解决日益严峻的社会环境和日趋枯竭资源问题,让不同能源结构能够得到优化配置,本文采用了改进的自适应遗传算法来对能源进行预测分析,借助计量自动化系统提供的大量电力负荷数据,基于用户群体分析与识别,改进自适应遗传算法等大数据技术对负荷进行预测,并对不同行业和部门,不同能源结构进行深入的分析与研究与探讨。对比传统的几种预测算法,得出改进的自适应遗传算法具有更加准确的预测能力,研究结果表明,提前做好相关能源的预测,对能源结构进行过综合的规划是很有必要的,可以引领能源模式走入一种全新的模式,开拓能源互联网新时代。为能源结构的转型升级做好必要的工作。能源的综合规划能缓解现在面临的能源危机和环境污染等严重的问题。
In order to solve the problem of increasingly severe social environment and increasingly exhausted resources,so that different energy structures can be optimized,this paper adopts an improved adaptive genetic algorithm to predict and analyze energy resources,With the help of a large number of power load data provided by metrology automation system,based on user group analysis and identification,improved adaptive genetic algorithm and other data technology,load forecasting is carried out,and different industries and departments,different energy structures are analyzed and discussed in depth.Compared with several traditional prediction algorithms,the improved adaptive genetic algorithm has more accurate prediction ability.The research results show that it is necessary to do a good job of related energy prediction in advance and make a comprehensive planning of energy structure.It can lead the energy model into a new mode and open up a new era of energy internet.To do the necessary work for the transformation and upgrading of energy structure.Comprehensive energy planning can alleviate the serious problems such as energy crisis and environmental pollution and other serious problems.
作者
徐伟燕
XU Weiyan(Honghe Power Supply Bureau of Yunnan Power Grid Co.,Ltd.,Honghe 661100 Yunnan,China)
出处
《电力大数据》
2019年第7期34-40,共7页
Power Systems and Big Data
关键词
大数据技术
负荷预测
改进自适应遗传算法
综合能源规划
big data technology
load forecasting
improved self-adaption genetic algorithm
comprehensive energy planning