期刊文献+

基于改进自适应遗传算法综合能源规划的研究与分析 被引量:11

Research and analysis of comprehensive energy planning based on improved self-adaption genetic algorithms
下载PDF
导出
摘要 为了解决日益严峻的社会环境和日趋枯竭资源问题,让不同能源结构能够得到优化配置,本文采用了改进的自适应遗传算法来对能源进行预测分析,借助计量自动化系统提供的大量电力负荷数据,基于用户群体分析与识别,改进自适应遗传算法等大数据技术对负荷进行预测,并对不同行业和部门,不同能源结构进行深入的分析与研究与探讨。对比传统的几种预测算法,得出改进的自适应遗传算法具有更加准确的预测能力,研究结果表明,提前做好相关能源的预测,对能源结构进行过综合的规划是很有必要的,可以引领能源模式走入一种全新的模式,开拓能源互联网新时代。为能源结构的转型升级做好必要的工作。能源的综合规划能缓解现在面临的能源危机和环境污染等严重的问题。 In order to solve the problem of increasingly severe social environment and increasingly exhausted resources,so that different energy structures can be optimized,this paper adopts an improved adaptive genetic algorithm to predict and analyze energy resources,With the help of a large number of power load data provided by metrology automation system,based on user group analysis and identification,improved adaptive genetic algorithm and other data technology,load forecasting is carried out,and different industries and departments,different energy structures are analyzed and discussed in depth.Compared with several traditional prediction algorithms,the improved adaptive genetic algorithm has more accurate prediction ability.The research results show that it is necessary to do a good job of related energy prediction in advance and make a comprehensive planning of energy structure.It can lead the energy model into a new mode and open up a new era of energy internet.To do the necessary work for the transformation and upgrading of energy structure.Comprehensive energy planning can alleviate the serious problems such as energy crisis and environmental pollution and other serious problems.
作者 徐伟燕 XU Weiyan(Honghe Power Supply Bureau of Yunnan Power Grid Co.,Ltd.,Honghe 661100 Yunnan,China)
出处 《电力大数据》 2019年第7期34-40,共7页 Power Systems and Big Data
关键词 大数据技术 负荷预测 改进自适应遗传算法 综合能源规划 big data technology load forecasting improved self-adaption genetic algorithm comprehensive energy planning
  • 相关文献

参考文献16

二级参考文献170

共引文献382

同被引文献125

引证文献11

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部