期刊文献+

酸、热胁迫条件下酸土脂环酸芽孢杆菌SOD基因的表达分析 被引量:2

Analysis of SOD Gene Expression in Alicyclobacillus acidoterrestris under Heat and Acid Stresses
原文传递
导出
摘要 本研究在克隆得到酸土脂环酸芽孢杆菌DSM 3922T SOD基因全序列的基础上,利用荧光实时定量PCR技术分别检测酸土脂环酸芽孢杆菌SOD基因在酸、热胁迫条件下的表达差异。结果表明:该基因在正常生长条件下组成性表达,在酸、热胁迫下表达量在短时间内迅速上调,酸胁迫0.5 h表达量为对照组的4.63倍,胁迫1 h表达量升至最高,为对照组的32.55倍,随后表达量迅速下调,胁迫5 h时表达量降至对照组的1.67倍。70℃热胁迫5 min时SOD基因相对表达量为对照组的2.81倍,胁迫25 min时表达量升至最高,为对照组的15.05倍,随后表达量下调,胁迫40 min时表达量降至对照组的4.93倍。酸土脂环酸芽孢杆菌SOD基因对酸、热环境胁迫具有快速反应的特点,表明酸土脂环酸芽孢杆菌SOD基因与该菌嗜热耐酸的独特生理适应机制密切相关。 Based on the complete sequence of the SOD gene cloned from Alicyclobacillus (A). acidoterrestris DSM 3922, quantitative real time polymerase chain reaction (PCR) was used to analyze the differences in SOD mRNA expression levels in A. acidoterrestris under acid and heat stresses. The results showed that the SOD gene of A. acidoterrestris was constitutively expressed under normal growth conditions and was quickly upregulated under acid and heat stress conditions. SOD expression level after 0.5 h of acid stress was 4.63 times higher than that of the control group and then increased to a maximum level, which was 32.55 times higher than that of the control group after one hour of acid stress. Subsequently, the SOD gene expression level rapidly decreased and was 1.67 times higher than that of the control group when acid stress was applied for five hours. When heat stress was applied at 70 for five minutes, the relative expression level of the SOD gene was 2.81 times higher than that of the control group and then increased to a maximum level, which was 15.05 times higher than that of the control after 25 minutes of heat stress. Subsequently, the SOD gene expression level rapidly decreased and was 4.93 times higher than that of control group when heat stress was applied for 40 minutes. A rapid response is a characteristic of SOD gene expression in A. acidoterrestris under heat and acid stresses, indicating that the SOD gene of A. acidoterrestris was closely related to the unique physiological mechanism for thermoacidophilic adaptation of A. acidoterrestris. © 2015, Editorial Board of Modern Food Science and Technology. All right reserved.
出处 《现代食品科技》 EI CAS 北大核心 2015年第11期80-85,共6页 Modern Food Science and Technology
基金 国家自然科学基金资助项目(31401673) 河南省基础与前沿技术研究计划项目(142300410137)
关键词 酸土脂环酸芽孢杆菌 SOD 基因表达 酸胁迫 热胁迫 Bacilli Cloning Enzymes Genes Oxygen Physiological models Plants (botany) Polymerase chain reaction Thermal stress
  • 相关文献

参考文献5

二级参考文献61

  • 1付凤玲,李晚忱,荣廷昭.N6培养基添加钙和烯效唑对玉米幼胚培养的作用[J].作物学报,2005,31(5):634-639. 被引量:21
  • 2颜宏,赵伟,盛艳敏,石德成,周道玮.碱胁迫对羊草和向日葵的影响[J].应用生态学报,2005,16(8):1497-1501. 被引量:103
  • 3田春美,钟秋平.超氧化物歧化酶的现状研究进展[J].中国热带医学,2005,5(8):1730-1732. 被引量:59
  • 4张艳馥,董原,沙伟.玉米幼苗对盐胁迫的顺应反应[J].安徽农业科学,2007,35(13):3805-3805. 被引量:3
  • 5Scandalios J G. The rise of ROS. Trends in biochemical. Sciences, 2002, 27:483-486.
  • 6Angelova M B. Heat-shock-induced oxidative stress and antioxidant response in Aspergillus niger 26. Canadian Journal of Microbiology, 2008, 54(12) :977-983.
  • 7Reddy M V, Gangadharam PR. Heat shock treatment of macrophages causes increased release of superoxide anion. Infect Immun, 1992, 60:2386-2390.
  • 8Hae Yong Yoo, Shin Seog Kim, Hyune Mo Rho. Overexpression and simple purification of human superoxide dismutase ( SOD1 ) in yeast and its resistance to oxidative stress. J Biotechnol, 1999, 68:29-35.
  • 9Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem, 1995, 64:97-112.
  • 10Miller A F. Superoxide Processing. In Coordination Chemistry in the Biosphere and Geosphere. Edited by Que L Jr, Tolman W. Oxford, Amsterdam, New York and Tokyo : Pergamon, 2003. 479-506.

共引文献39

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部