期刊文献+

环境因子交互作用下蜡样芽孢杆菌生长/非生长界面模型的建立与评价 被引量:5

Modeling and Evaluating the Growth/No Growth Boundaries of Bacillus cereus: Effect of Temperature, pH, and Water Activity
原文传递
导出
摘要 本文旨在建立一种生长/非生长界面模型来预测蜡样芽胞杆菌在环境因子交互作用下的生长概率。选取五株蜡样芽孢杆菌菌株的混合菌株作为研究对象,研究温度、pH、Aw对混合菌株生长概率的交互影响。获得的生长/非生长实验数据用logistic回归方程拟合,建立了环境因子交互作用下蜡样芽孢杆菌生长/非生长界面模型。实验采取部分析因设计方案,选定80%的实验数据用做模型的拟合,20%的数据用做模型的验证。并从已发表的文献中选取30个数据作为测试集,通过比较预测值和观察值来检测已建模型的适用度。实验结果表明,训练集的一致性指数为0.991,验证集的一致率为0.988,说明模型对同类数据预测准确度高;同时模型的R2-Nagelkerke值也较高,为0.949;Hosmer-Lemeshow检验中的χ2=0.012,P=1,logistic回归模型拟合度较高。模型对测试集的预测准确率达83.3%,该模型对所选数据具有较高的预测能力,说明模型具有较广的适用范围。 Bacillus cereus is an opportunistic pathogen, implicated in two main food-borne diseases: emetic syndrome and diarrheal syndrome. The aim of this study was to establish a probabilistic model to predict the growth/no growth conditions or growth probability of B. cereus as a function of temperature, pH, and water activity (Aw). Using a cocktail of five strains of B.cereus, a logistic regression model was chosen to study the effects of different values of temperature, pH, Awon the growth probability of B. cereus. A fractional factorial design was applied and the experimental data were divided into two parts: 80% data was chosen as model data and 20% data was chosen as validation data. A comparison was made between the predicted and observed values by selecting 30 experimental data from the literature, to test the model. The results showed that the concordance index of the model data was 0.991, while that of the validation data was 0.988. This indicated that the model showed high predictive accuracy for homogeneous data. Additionally, the performance statistics obtained indicated a reasonable goodness-of-t of the model obtained, mainly owing to the high values of R2-Nagelkerke (0.949) and χ2= 0.012, p = 1 of the Hosmer-Lemeshow statistic. A high predictive accuracy was obtained (83.3%) with test data, showing a wide range of possible applications. © 2015, South China University of Technology. All right reserved.
出处 《现代食品科技》 EI CAS 北大核心 2015年第12期205-213,共9页 Modern Food Science and Technology
基金 上海市农业科技成果转化项目(沪农科转字(2015)第2-1号) 农业部引进国际先进农业科学技术项目(2011-Z12)
关键词 蜡样芽孢杆菌 生长/非生长界面模型 LOGISTIC回归模型 Bacteriology pH effects Regression analysis
  • 相关文献

参考文献19

  • 1Jeanne-Marie Membré,Ronald J.W. Lambert.??Application of predictive modelling techniques in industry: From food design up to risk assessment(J)International Journal of Food Microbiology . 2008 (1)
  • 2P.N. Skandamis,J.D. Stopforth,P.A. Kendall,K.E. Belk,J.A. Scanga,G.C. Smith,J.N. Sofos.??Modeling the effect of inoculum size and acid adaptation on growth/no growth interface of Escherichia coli O157:H7(J)International Journal of Food Microbiology . 2007 (3)
  • 3A. Valero,C. Hervás,R.M. García-Gimeno,G. Zurera.??Product unit neural network models for predicting the growth limits of Listeria monocytogenes(J)Food Microbiology . 2006 (5)
  • 4M. Raevuori.??Effect of sorbic acid and potassium sorbate on growth of Bacillus cereus and Bacillus subtilis in rice filling of Karelian pasty(J)European Journal Of Applied Microbiology . 1976 (3)
  • 5Lake R,Hudson A,Cressey P.Risk Profile:Bacillus spp.in Rice. . 2004
  • 6ROSS T,DALGAARD P.Secondary models. Modeling microbial responses infood . 2004
  • 7BEWICK V,CHEEK L,BALL J.Statistics review14: Logistic regression. CritCare . 2005
  • 8Benedict R C,Partridge T,Wells D,et al.Bacillus cere-us:aerobic growth kinetics. Journal of Food Protec-tion . 1993
  • 9N.J.D. Nagelkerke.A note on a general definition of the coefficient of determination. Biometrika . 1991
  • 10Asplund K,Nurmi E,Hill P,Hirn J.The inhibition of the growth of Bacillus cereus in liver sausage. International Journal of Food Microbiology . 1988

二级参考文献14

共引文献10

同被引文献61

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部