期刊文献+

Sensitivity of on-line wavelength during retrieval of atmospheric CO2 vertical profile 被引量:2

Sensitivity of on-line wavelength during retrieval of atmospheric CO2 vertical profile
原文传递
导出
摘要 Accurately measuring the differential molecular absorption cross section is the key to obtaining a high-precision concentration of atmospheric trace gases in a differential absorption lidar(DIAL) system. However, the CO2 absorption line is meticulous at 1.6 μm, easily translating and broadening because of the change of temperature and pressure. Hence, measuring the vertical profile of atmospheric temperature and pressure to calculate the vertical profile of the CO2 weight parameter is necessary. In general, measuring atmospheric temperature and pressure has a certain amount of uncertainty. Therefore, this study proposes the concept of a balanced on-line wavelength,where the differential molecular absorption cross section is larger and the CO2 weight parameter is insensitive to the uncertainty of atmospheric temperature and pressure. In this study, we analyzed the influence of uncertainty on the CO2 weight parameter at every preselected wavelength, as well as determined an appropriate wavelength near one of the absorption peaks. Our result shows that 1572.023 nm should be one of the appropriate balanced online wavelengths. The measurement errors of the mixing ratio of CO2 molecule in this wavelength are only 0.23%and 0.25% and are caused by 1 K temperature error and 1h Pa pressure error, respectively. This achievement of a balanced on-line wavelength will not only depress the requirement of the laser’s frequency stabilization but also the demand for measurement precision of the atmospheric temperature and pressure profile. Furthermore, this study can achieve the exact measurement of the vertical profile of atmospheric CO2 based on an independent differential absorption laser. Accurately measuring the differential molecular absorption cross section is the key to obtaining a high-precision concentration of atmospheric trace gases in a differential absorption lidar(DIAL) system. However, the CO2 absorption line is meticulous at 1.6 μm, easily translating and broadening because of the change of temperature and pressure. Hence, measuring the vertical profile of atmospheric temperature and pressure to calculate the vertical profile of the CO2 weight parameter is necessary. In general, measuring atmospheric temperature and pressure has a certain amount of uncertainty. Therefore, this study proposes the concept of a balanced on-line wavelength,where the differential molecular absorption cross section is larger and the CO2 weight parameter is insensitive to the uncertainty of atmospheric temperature and pressure. In this study, we analyzed the influence of uncertainty on the CO2 weight parameter at every preselected wavelength, as well as determined an appropriate wavelength near one of the absorption peaks. Our result shows that 1572.023 nm should be one of the appropriate balanced online wavelengths. The measurement errors of the mixing ratio of CO2 molecule in this wavelength are only 0.23%and 0.25% and are caused by 1 K temperature error and 1h Pa pressure error, respectively. This achievement of a balanced on-line wavelength will not only depress the requirement of the laser’s frequency stabilization but also the demand for measurement precision of the atmospheric temperature and pressure profile. Furthermore, this study can achieve the exact measurement of the vertical profile of atmospheric CO2 based on an independent differential absorption laser.
出处 《Photonics Research》 SCIE EI 2015年第4期146-152,共7页 光子学研究(英文版)
基金 supported by the National Natural Science Foundation of China (Grant No. 41127901) the Program for Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1278)
  • 相关文献

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部