期刊文献+

Hybrid silicon slotted photonic crystal waveguides:how does third order nonlinear performance scale with slow light? 被引量:2

Hybrid silicon slotted photonic crystal waveguides:how does third order nonlinear performance scale with slow light?
原文传递
导出
摘要 We investigate in this paper the influence of slow light on the balance between the Kerr and two-photon absorption(TPA) processes in silicon slotted hybrid nonlinear waveguides. Three typical silicon photonic waveguide geometries are studied to estimate the influence of the light slow-down factor on the mode field overlap with the silicon region, as well as on the complex effective nonlinear susceptibility. It is found that slotted photonic crystal modes tend to focalize in their hollow core with increasing group index(n_G) values. Considering a hybrid integration of nonlinear polymers in such slotted waveguides, a relative decrease of the TPA process by more factor of 2 is predicted from n_G=10 to n_G=50. As a whole, this work shows that the relative influence of TPA decreases for slotted waveguides operating in the slow light regime, making them a suitable platform for third-order nonlinear optics. We investigate in this paper the influence of slow light on the balance between the Kerr and two-photon absorption(TPA) processes in silicon slotted hybrid nonlinear waveguides. Three typical silicon photonic waveguide geometries are studied to estimate the influence of the light slow-down factor on the mode field overlap with the silicon region, as well as on the complex effective nonlinear susceptibility. It is found that slotted photonic crystal modes tend to focalize in their hollow core with increasing group index(n_G) values. Considering a hybrid integration of nonlinear polymers in such slotted waveguides, a relative decrease of the TPA process by more factor of 2 is predicted from n_G=10 to n_G=50. As a whole, this work shows that the relative influence of TPA decreases for slotted waveguides operating in the slow light regime, making them a suitable platform for third-order nonlinear optics.
出处 《Photonics Research》 SCIE EI 2016年第6期257-261,共5页 光子学研究(英文版)
基金 Agence Nationale de la Recherche(ANR)(POSISLOT)
  • 相关文献

参考文献1

二级参考文献26

  • 1Baba T. Slow light in photonic crystals. Nature Photonics, 2008, 2 (8): 465-473.
  • 2Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics, 2012, 6(4): 248-252.
  • 3Monat C, Corcoran B, Pudo D, Ebnali-Heidar M, Grillet C, Pelusi M D, Moss D J, Eggleton B J, White T P, O'Faolain L, Kauss T F. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 344-356.
  • 4Frandsen L H, Lavrinenko AV, Fage-Pedersen J, Borel P I. Photonic crystal waveguides with semi-slow light and tailored dispersion properties. Optics Express, 2006, 14(20): 9444-9450.
  • 5Kubo S, Moil D, Baba T. Low-group-velocity and low-dispersion slow light in photonic crystal waveguides. Optics Letters, 2007, 32 (20): 2981-2983.
  • 6Hao R, Cassan E, Kurt H, Le Roux X, Marris-Morini D, Vivien L, Wu H M, Zhou Z P, Zhang X L. Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion. Optics Express, 2010, 18(6): 5942-5950.
  • 7Hao R, Cassan E, Le Roux X, Gao D S, Do Khanh V, Vivien L, Marris-Morini D, Zhang X L. Improvement of delay-bandwidth product in photonic crystal slow-light waveguides. Optics Express, 2010, 18(16): 16309-16319.
  • 8Petrov A Y, Eich M. Zero dispersion at small group velocities in photonic crystal waveguides. Applied Physics Letters, 2004, 85(21): 4866-4868.
  • 9O'Faolain L, Schulz S A, Beggs D M, White T P, Spasenovic M, Kuipers L, Morichetti F, Melloni A, Mazoyer S, Hugonin J P, Lalarme P, Krauss T F. Loss engineered slow light waveguides. Optics Express, 2010, 18(26): 27627-27638.
  • 10Mazoyer S, Baron A, Hugonin J P, Lalanne P, Melloni A. Slow pulses in disordered photonic-crystal waveguides. Applied Optics, 2011, 50(31): G113-G117.

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部