期刊文献+

Self-adjustment of a nonlinear lasing mode to a pumped area in a two-dimensional microcavity [Invited] 被引量:1

Self-adjustment of a nonlinear lasing mode to a pumped area in a two-dimensional microcavity [Invited]
原文传递
导出
摘要 We numerically performed wave dynamical simulations based on the Maxwell–Bloch(MB) model for a quadrupole-deformed microcavity laser with spatially selective pumping. We demonstrate the appearance of an asymmetric lasing mode whose spatial pattern violates both the x-and y-axes mirror symmetries of the cavity.Dynamical simulations revealed that a lasing mode consisting of a clockwise or counterclockwise rotating-wave component is a stable stationary solution of the MB model. From the results of a passive-cavity mode analysis, we interpret these asymmetric rotating-wave lasing modes by the locking of four nearly degenerate passive-cavity modes. For comparison, we carried out simulations for a uniform pumping case and found a different locking rule for the nearly degenerate modes. Our results demonstrate a nonlinear dynamical mechanism for theformation of a lasing mode that adjusts its pattern to a pumped area. We numerically performed wave dynamical simulations based on the Maxwell–Bloch(MB) model for a quadrupole-deformed microcavity laser with spatially selective pumping. We demonstrate the appearance of an asymmetric lasing mode whose spatial pattern violates both the x-and y-axes mirror symmetries of the cavity.Dynamical simulations revealed that a lasing mode consisting of a clockwise or counterclockwise rotating-wave component is a stable stationary solution of the MB model. From the results of a passive-cavity mode analysis, we interpret these asymmetric rotating-wave lasing modes by the locking of four nearly degenerate passive-cavity modes. For comparison, we carried out simulations for a uniform pumping case and found a different locking rule for the nearly degenerate modes. Our results demonstrate a nonlinear dynamical mechanism for theformation of a lasing mode that adjusts its pattern to a pumped area.
出处 《Photonics Research》 SCIE EI 2017年第6期49-55,共7页 光子学研究(英文版)
基金 Waseda University Grant for Special Research Projects(2017B-197)
  • 相关文献

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部