期刊文献+

一种直接生成跨层频繁模式的算法

Directly Generating Cross Level Frequent Patterns
下载PDF
导出
摘要 定义了一种基于树的跨层模式信息表示 ,在此基础上提出了直接生成跨层频繁模式算法TBA CLFP。它能高效地挖掘多层特别是跨层频繁模式。实验表明TBA CLFP的时间效率与空间可伸缩性远优于Cumulate,Apriori等经典算法。TBA CLFP可进一步推广到数量型频繁模式挖掘。 In this paper, a novel algorithm, TBA CLFP, is proposed, which employs a tree based data structure to represent cross level pattern information and can directly mine single, multiple and cross level frequent patterns. Comparative experiments with Apriori and Cumulate show that TBA CLFP is much more efficient and scalable. TBA CLFP can be transplanted to mine quantitative cross level frequent patterns.
出处 《计算机应用研究》 CSCD 北大核心 2003年第1期11-12,16,共3页 Application Research of Computers
基金 浙江省自然科学基金资助项目 浙江省教育厅科技计划资助项目
关键词 数据挖掘 数据管理 数据结构 数据库 跨层频繁模式算法 Data Mining Cross Level Frequent Patterns Data Management
  • 相关文献

参考文献9

  • 1[1]R Agrawal,R Srikant. Fast Algorithms for Mining Association Rules[C].Proc. 1994 Int. Conf. on Very Large Databases (VLDB'94),Santiago,Chile,Sept. 1994.
  • 2[2]R Agrawal,T Imielinski,A Swami. Mining Association Rules Between Sets of Items in Large Databases[C]. Proc.1993 ACM SIGMOD Int. Conf. on Management of Data,Washington,D.C.,May 1993.
  • 3[3]J Han,Y Fu. Discovery of Multiple-level Association Rules from Large Databases[C].Proc. 1995 Int. Conf. on Very Large Databases,Zuich,Switzerland,Sept.1995.
  • 4[4]R Srikant,R Agrawal. Mining Generalized Association Rules[C].Proc. 1995 Int. Conf. on Very Large Databases,Zuich,Switzerland,1995.
  • 5[5]J Han,J Pei,Y Yin. Mining Frequent Patterns without Candi-date Generation[C].Proc. 2000 ACM SIGMOD Int. Conf. on Management of Data,Dallas,TX,2000.
  • 6[6]R Agrawal,C Aggarwal,V V V Prasad.A Tree Projection Al-gorithm for Generation of Frequent Itemsets[J].Journal of Parallel and Distributed Computing (Special Issue on High Performance Data Mining),2000.
  • 7[7]R Srikant,R Agrawal. Mining Quantitative Association Rules in Large Relational Tables[C]. Proc. 1996 ACM SIGMOD Int. Conf. on Management of Data,June 1996.
  • 8[8]R J Bayardo. Efficiently Mining Long Patterns from Databases[C].Proc. 1998 ACM SIGMOD Int. Conf. on Management of Data,Seattle,Washington,1998.
  • 9[9]N Pasquier,Y Bastide,et al. Discovering Frequent Closed Item-sets for Association Rules[C].Proc. 1999 Int. Conf. on Database Theory,Jerusalem,Israel,1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部