期刊文献+

铝合金穿孔型等离子弧立焊的BP神经网络预测模型 被引量:2

BP Neural Network Predicting Model for Aluminium Alloy Keyhole Plasma Arc Welding in Vertical Position
下载PDF
导出
摘要 基于MATLAB6.1的神经网络工具箱 ,利用BP神经网络建立铝合金穿孔型等离子弧立焊的输入 -输出的网络模型 ,通过训练该网络 ,能够根据输入节点数值预测输出结果。当给定网络输入节点的各个焊接工艺参数值 ,能够预测网络的输出 ,即焊缝形状的各个参数。用这个工艺的匹配值进行焊接试验。结果表明 ,焊缝的形状参数与网络模型的预测结果之间的误差在 8%以内。仿真试验的结果表明 ,这个方案是可行的。 In this paper, based on MATLAB6.1 neural network toolbox, a BP neural network modal for vertical position PAW input-output is established.According to each value of input nodes,the output can be predicted by testing this network.When welding parameters of input nodes are given,the parameters of welding formation can be predicted.The experimental results made with the combination of each parameters show that the error between parameters of real welds and its predicting results is within 8 percent. The results of simulation experiments show that this way is practical.
出处 《焊接学报》 EI CAS CSCD 北大核心 2002年第6期41-43,共3页 Transactions of The China Welding Institution
基金 江苏省教育厅自然科学研究基金项目 (0 2KJB460 0 0 5 )
关键词 铝合金 穿孔型等离子弧立焊 神经网络 预测模型 plasma arc welding vertical position welding neural network
  • 相关文献

参考文献3

二级参考文献13

共引文献49

同被引文献25

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部