期刊文献+

纤维增强钛基复合材料界面剪切强度的FEM分析 被引量:2

FEM Modeling of Interfacial Shear Strength in SiC -Fibre Reinforced Titanium Matrix Composites
下载PDF
导出
摘要 用薄试样push-out和push-back试验测试了SCS-6/Timetal834复合材料从室温到530℃温度范围内的峰值载荷和滑动摩擦切应力。用轴对称圆柱有限元模型模拟计算了SiC纤维增强钛基复合材料不同温度下的界面应力沿轴向分布规律和界面脱粘过程。计算表明,push-out试验的界面脱粘过程可以用剪切强度准则描述,对于SCS-6/Timetal834复合材料,当界面单元尺寸L=6.25μm时,其室温下界面剪切强度τm=500MPa,300℃时τm=300MPa,530℃时τm=140MPa。由于应力奇异性的影响,界面剪切强度的值与单元尺寸大小有关。 Push-out and push-back experiments of SCS-6/Timetal 834composites have been performed in the temperature r ange of room temperature to 530℃to measure the ma ximum load values and slip shear stre sses.On the basis of cylinder FEM mod el the interfacial shear stress distribution and the debondi ng process of composites for differe nt temperature range are modeled by f inite element method.It is found that the debonding process can be described by the shear strength criterion and the interfacial shear strength isτ m =500MPa at room tem-perature,τ m =300MPa at 300℃andτ m =140MPa at 530℃when the interfacial element length is 6.25μm.Since the stress field at crack tip is singular,the interfacial shear strength is dependent on the size of element.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2002年第6期445-448,共4页 Rare Metal Materials and Engineering
基金 中德合作项目
关键词 纤维增强钛基复合材料 FEM分析 push-out试验 有限元 剪切强度 Ti-matrix composite push-out tests FEM shear strength
  • 相关文献

参考文献3

二级参考文献11

  • 1马济民,中日钛合金及金属间化合物研讨会文集,1997年
  • 2黄礼平,稀有金属,1997年,21卷,82页
  • 3张煮,稀有金属,1997年,21卷,85页
  • 4曾泉浦,稀有金属材料与工程,1997年,26卷,2期,10页
  • 5邓炬,稀有金属材料与工程,1996年,25卷,1期,52页
  • 6周廉,第八届国际钛会论文集,1995年
  • 7许加龙,第八届全国钛学术会论文集,1993年
  • 8邓炬,航空材料杂志,1990年,104G1卷,1页
  • 9任于,中国有色金属进展,1984年,2卷,2页
  • 10罗国珍,稀有金属材料与工程,1983年,22卷,5期,19页

共引文献107

同被引文献39

  • 1PENG Ji-hua, MAO Yong, LI Shi-qiong, SUN Xun-fang. Microstructure controlling by heat treatment and complex processing for Ti2AlNb based alloys [J]. Material Science and Engineering A, 2001, 299(1/2): 75-80.
  • 2CHRISTOPH L, MAN-FRED E Titanium and titanium alloys [M]. Weinheim: Wiley-VCH Verlay Gmbh & Co KGaA, 2003: 59-62.
  • 3韩明臣.钛铝化合物箔的加工.钛工业进展,1998,15(6):29-30.
  • 4CHEN Fuh-kuo. CHIU Kuan-hua. Stamping formability of pure titanium sheets [J]. Journal of Materials Processing Technology, 2005, 170(1/2): 181-186.
  • 5RODNEY B, GERHAND W, COLLINGS E W. Materials properties handbook: Titanium alloys [M]. Materials Park: ASM International, 1994: 594-598.
  • 6LIANG X B, LI S Q, CHENG Y J, ZHANG J W. Flow stress behavior and deformation characteristics of Ti-22Al-25Nb alloys at elevated temperature [J]. Materials Science Forum, 2005, 475/479: 825-828.
  • 7SHANKAR H, PRASAD N E, SINGH A K, NANDY T K. Low temperature flow behaviour of B2 intermetallic phase in Ti-Al-Nb system [J]. Materials Science and Engineering A, 2006 424(1/2): 71-76.
  • 8RHODES C G, SMITH P R, HANUSIAK W H, SHEPARD M J. Microstructural evolution in wire-drawn Ti-22Al-26Nb powder [J]. Metallurgical and Materials Transaction A, 2000, 31(11): 2931-2941.
  • 9TANG F, HAGIWARA M. Effect of compositional modification on ductility of B2 phase in Ti-Al-Nb intermetallic alloy [J]. Journal of Materials Research, 2002, 17(10): 2611-2614.
  • 10LUO D, CUI Y Y, YANG R. Effects of cooling rate on the microstructure and room temperature tensile properties of orthorhombic Ti-22Al-21Nb-1Ta-1W alloy [J]. Materials Science Forum, 2005, 475/476/477/478/479:817-820.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部