期刊文献+

因特网用户信息需求的发掘与跟踪 被引量:3

The Mining and Tracing of Internet Users' Information Needs
原文传递
导出
摘要 探讨因特网用户信息需求发掘和跟踪的方法与技术,重点研究Web挖掘在用户信息需求数据分析中的应用。 To follow users' information needs is an important foundation for Internet information service . This paper explores the methods and technologies in digging and tracing Internet users information needs, such as gathering the data of Internet users information needs, analyzing the data and discovering users' needs patterns. The Web data mining in describing information users' needs is studied emphatically.
作者 邓小昭
出处 《图书情报工作》 CSSCI 北大核心 2002年第12期75-79,共5页 Library and Information Service
关键词 信息需求 信息用户 WEB挖掘 因特网 用户信息需求数据分析 information needs information users Web data mining Internet
  • 相关文献

参考文献4

二级参考文献20

  • 11,Belkin N J, Croft W B. Information filtering and information retrieval: two sides of the same coin. Communication of ACM, 1992,35(12):29~38
  • 22,Joachims T. Text categorization with support vector machine. Technical Report. LS VIII Number 23, German: University of Dortmund, 1997
  • 33,Pazzani M, Billsus D. Learning and revising user profiles: the identification of interesting web sites. Machine Learning, 1997,27(3):313~331
  • 44,Armstrong R, Freitag D, Joachims T et al. WebWatcher: a learning apprentice for the World Wide Web. In: American Association for Artificial Intelligence ed. Working Notes of the AAAI Spring Symposium Series on Information Gathering from Distributed, Heterogeneous Environments. Cambridge, MA: AAAI Press, 1995. 6~12
  • 55,Lieberman H. Letizia: an agent that assists web browsing. In: AT&T Labs ed. Proceedings of the International Joint Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufman Publishers, 1995. 924~929
  • 66,Lashkari Y. The WebHound personalized document filtering system. 1997, http://rg.media.mit.edu/projects/webhound/
  • 77,Rocchio J. Relevance feedback in information retrieval. In: Salton G ed. The SMART Retrieval System: Experiments in Automatic Document Processing. Englewood Cliffs, NJ: Prentice-Hall Inc., 1997. 313~323
  • 88,Harman D. Relevance feedback revisited. In: ACM ed. Proceedings of the SIGIR'92. Copenhagen: ACM Press, 1992
  • 99,Allan J. Incremental relevance feedback for information filtering. In: ACM ed. Proceedings of the SIGIR'96. Copenhagen: ACM Press, 1996. 270~278
  • 1010,Cortes C, Vapnik V. Support-Vector networks. Machine Learning, 1995,20(3):273~297

共引文献101

同被引文献27

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部