摘要
给出了紧距离空间上实测度的一种较强的弱收敛的定义,并由此证明了实测度全体所成的空间关于此种弱收敛拓扑成一可分完备距离空间.
In this article, the definition of a kind of weak convergence about real measures on a compact metric space is given, and this kind of weak convergence is stronger than the usual one, and it is proven that all real measures form a separable and complete metric space about this kind of weak convergence topology.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第1期12-13,共2页
Journal of Xiamen University:Natural Science