期刊文献+

模糊数值函数的可测性、近似连续性及积分原函数的可导性

The measurability,approximate continuity and differentiability of primitives for the fuzzy-valued functions
下载PDF
导出
摘要 基于很多实际背景 (如求解模糊微分方程及完备模糊积分理论等 )的需要 ,对模糊数值函数的可测性。 Since the requirement of the real background of fuzzy mathematics(for examples,to solve the fuzzy differential equations and complete the theory of fuzzy integrals),the measurability,approximate continuity and differentiability of primitives for the fuzzy valued functions are discussed.
作者 巩增泰
出处 《西北师范大学学报(自然科学版)》 CAS 2003年第1期1-3,共3页 Journal of Northwest Normal University(Natural Science)
基金 甘肃省自然科学基金资助项目 (ZS0 11 A2 5 0 12 Z) 西北师范大学科技创新工程资助项目 (NWNU KJCXGC 2 12 )
关键词 积分原函数 模糊数值函数 可测性 近似连续性 可导性 模糊集 模糊数空间 fuzzy valued functions measurability approximate continuity differentiability
  • 相关文献

参考文献2

二级参考文献12

  • 1吴从炘 马明.模糊分析学基础[M].北京:国防工业出版社,1991..
  • 2Gong Z T,Wu C X. Are the primitives of (K) integrable functions differatiable? [J]. 数学研究与评论(已定稿,待发表).
  • 3Gong Z T,Wu C X. Bounded variation,absolute continuity and absolute integrability for fuzzy-number-valued functions [J]. Fuzzy Sets and Systems. 2002.129:83- 94.
  • 4Wu C X ,Gong Z T. On Henstock integral of interval-valued functions and fuzzy-valued functions [J]. Fuzzy Sets and Systems, 2000,115 : 377 - 391.
  • 5Puri M L,Ralesu D A. Differentials for fuzzy functions [J]. J. Math. Anal. Appl. , 1983,91 : 552- 558.
  • 6Kaleva O. The Cauchy problem for fuzzy differential equations [J]. Fuzzy Sets and Systems, 1990,35:389-396.
  • 7Kaleva O. Fuzzy differential equations [J]. Fuzzy Sets and Systems, 1987,24 : 301 - 317.
  • 8Kaleva O. The calculus of fuzzy valued functions[J]. Appl. Math. Lett. , 1990,3:55-59.
  • 9Seikkala S. On the fuzzy initial value problem[J]. Fuzzy Sets and Systems,1987,24:319-330.
  • 10Wu C X,Song S J,Lee E S. Approximate solutions,existence and uniquenss of the Cauchy problem of fuzzy differential equations [J]. J. Math. Anal. Appl. , 1996,202 : 629 - 644.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部