期刊文献+

降元迭代法 被引量:2

ITERATIVE ALGORITHM OF REDUCING DEMINSIONS
下载PDF
导出
摘要 本文提出了一种新的求解大型线性方程组AX=b(其中A∈R^(n×n)为对称正定矩阵)的降元迭代法,降元的手段是在n维空间中,取k个线性无关的向量,然后将n元线性方程的未知数X的取值范围限定在由这k个线性无关向量所组成的一个子空间内;同时将原来n元线性方程组降成k元线性方程组.求解这个k元线性方程组可得到X在此子空间内的一个最优解.从这个最优解出发,在n维空间中,取另外k个线性无关的向量,并作同样的降元处理.这样就形成了一个降元迭代过程. The paper presents the method of solving huge linearly equations AX = b (where A∈Rn×n is symmetrical positive metrix) by iterative algorithm of reducing demin-sions. Means of reducing deminsions is that value range of unknown vector X in the huge linearly equations is limited to the subspace whith is defined by k linearly independent vectors which are selected from n deminsion space and that the linearly equations with n unknown numbers is reduced the linearly equations with k unknown unmbers. Solving the linearly equations with k unknown numbers, the optimal solution of X is obtained in the subspace. From the optimal solution, the other k linearly independent vectors are selected from n deminsion space and the linearly equations with n unknown numbers is reduced to linearly equations with k unknown numbers So the iterative algorithm of reducing deminsions is formed.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 1992年第2期249-261,共13页 Chinese Journal of Geophysics
关键词 降元 最优解 迭代法 线性方程组 Reducing deminsions, Optimal solution, Iterative algorithm
  • 相关文献

参考文献4

  • 1何昌礼,物化探计算技术,1986年,1卷,53页
  • 2刘家琦,应用数学与计算数学,1984年,4期
  • 3赵金熙,应用数学与计算数学,1984年,2期
  • 4赵嘉庆,最优化方法及原理,1983年

同被引文献29

  • 1曹益林,汪巘松.杂合型全局优化法优化水分子团簇结构[J].物理化学学报,2004,20(8):785-789. 被引量:4
  • 2李家康,姜兰茵,刘宇.共轭梯度法和奇异值分解法与降元迭代法的对比讨论[J].地球物理学报,1994,37(A02):616-619. 被引量:5
  • 3Quarteroni, A.; Sacco, R.; Saleri, F. Numerical mathematics. New York: Springer-Verlag, 2007.
  • 4Burden, R. L.; Fairs, J. D. Numerical analysis. 7th ed. Pacific Grove: Brooks/Cole Publishing, 2001.
  • 5Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical recipes in Fortran. 2nd ed. New York: Cambridge University Press, 1986.
  • 6Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quantum Chem. Syrup., 1979, 13:225.
  • 7Pervis Ⅲ, G. D.; Bartlett, R. J. J. Chem. Phys., 1981, 75:1284.
  • 8Ramasesha, S. J. Comput. Chem., 1990, 11:545.
  • 9Shuai, Z.; Ramasesha, S.; Bredas, J. L. Chem. Phys. Lett., 1996, 250:14.
  • 10Chen, F.; Chipman, D. M. J. Chem. Phys., 2003, 119:10289.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部