期刊文献+

二阶差分系统正解的存在性 被引量:1

Existence of positive solutions for second-order difference system
下载PDF
导出
摘要 依据Leray Schauder型非线性抉择对差分系统Δ2u1(k)+f1(k,u1(k),u2(k))=0 k∈[0,T]Δ2u2(k)+f2(k,u1(k),u2(k))=0 k∈[0,T]u1(0)=u1(T+2)=0=u2(0)=u2(T+2)给出了一个存在性定理. By using a nonlinear alternative of LeraySchauder type, the existence of positive solutions to a secondorder difference system of boundaryvalue problems Δ2u1(k)+f1(k,u1(k),u2(k))=0k∈Δ2u2(k)+f2(k,u1(k),u2(k))=0k∈u1(0)=u1(T+2)=0=u2(0)=u2(T+2)is proved.
出处 《甘肃工业大学学报》 北大核心 2002年第4期122-124,共3页 Journal of Gansu University of Technology
基金 甘肃省自然科学基金(ZS022 A25 003)
关键词 二阶差分系统 正解 存在性 非线性抉择 不动点 difference system positive solutions existence nonlinear alternative fixed point
  • 相关文献

参考文献1

二级参考文献3

  • 1Hai D D,Nonlinear Analysis,1999年,1051页
  • 2Erbe L H,Proc Amer Math Soc,1994年,120卷,3期,743页
  • 3徐登洲,线性微分方程的非线性扰动,1994年

共引文献1

同被引文献12

  • 1AGARWAL P R, O' REAGN D. A coupled system of difference equations [J]. Appl Math Comput, 2000,114 : 39-49.
  • 2HENDERSON J, WONG P J Y. On multiple solutions of a system of m discrete boundary value problems [J]. Z Angew Math Mech, 2001,81 (4) : 273-279.
  • 3LI W T, SUN J P. Multiple positive solutions of BVPs for third-order diserete difference systems [J]. Appl Math Comput, 2004,149 : 389-398.
  • 4LI W T,SUN J P. Existence of positive solutions of BVPs for third-order discrete nonlinear difference systems [J]. Appl Math Comput, 2004,157 : 53-64.
  • 5LI W T, SUN J P. Positive solutions of BVPs for third-order nonlinear difference systems [J]. Computers Math Appl, 2004, 47:611-620.
  • 6SUN J P, LI W T. Multiple positive solutions of a discrete difference system [J]. Appl Math Comput, 2003, 143 (2-3): 213-221.
  • 7SUN J P, LI W T. Existence of positive solutions of boundary value problem for a discrete difference system [J]. Appl Math-Comput, 2004,156 : 857-870.
  • 8GUO D, I.AKSHMIKANTHAM V. Nonlinear problems in abstract cones [M]. San Diego: Academic press, 1988.
  • 9LEGGETT R W, WILLIAMS L R. Multiple positive fixed points of nonlinear operators on ordered Banaeh spaces [J]. Indiana University Math J, 1979,28 : 673-688.
  • 10ELOE P W. A generalization of concavity for finite differences [J]. Computers Math Appl, 1998,35(10-12):109-113.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部