摘要
用泛函分析的理论和方法研究马尔可夫过程中生灭Q 矩阵的性质,证明在一定条件下生灭Q 矩阵生成一个线性算子C0半群,即此生灭Q 矩阵是某个C0半群的无穷小生成元.从而证明了生灭过程理论中的柯氏向后微分方程组解的存在性、唯一性和稳定性.
The property of birth and death Qmatrix in Markov processes is studied by using the theories and methods provided by functional analysis. It is proved that a birth and death Qmatrix generates a linear operator C0 semigroup, that is to say, the birth and death Qmatrix is the infinitesimal generator of the C0 semigroup. Therefore, the existence, uniqueness and stability of the solution of Kolmovgorov differential equations in Markov processes is verified.
出处
《甘肃工业大学学报》
北大核心
2002年第4期125-127,共3页
Journal of Gansu University of Technology