期刊文献+

MBE生长的垂直堆垛InAs量子点及HFET存储器件的应用 被引量:1

Vertically Stacked, Self-assembled MBE-grown InAs Quantum Dots and Application of Field Effect Transistor
下载PDF
导出
摘要 用MBE设备以Stranski Krastanov生长方式外延生长了5个周期垂直堆垛的InAs量子点,在生长过程中通过对量子点形状、尺寸的控制来提高垂直堆垛InAs量子点质量和均匀性。用原子力显微镜(AFM)进行表面形貌的表征,并利用光致发光(PL)和深能级瞬态谱(DLTS)对InAs量子点进行观测。所用Al0 5Ga0 5As势垒外延层,对镶嵌在其中的InAs量子点有很强的量子限制作用,并产生强量子限制效应,可以把InAs量子点的电子和空穴能级的热激发当作"深能级"的热激发来研究,这样可用DLTS方法进行测量。在垂直堆垛的InAs量子点的HFET器件中,由充电和放电过程的IDS VGS曲线可以看到阈值电压有非常大的移动,这样便产生存储效应。 The epilayer of vertically stacked, selfassembled InAs Quantum Dots (QDs) was grown by MBE with solid sources in noncracking Kcells, and the sample was fabricated to a FET structure using a conventional technology. A quantum dot (QD), the behavior of which is to capture and emit carriers like a giant trap, is studied using deep level transient spectroscopy (DLTS) technique. The electrons and holes in the QDs are respectively emitted from the relevant energy levels to the conduction and valence bands of the barrier layer with increasing measurement temperature, and the thermal emission energies from the QDs are related to their discrete energy levels. The 5period vertically stacked InAs QDs in the barrier layer of a fieldeffect type structure were measured, and the results were found to correspond to the capacitancevoltage and photoluminescence properties. At 77K and room temperature, the threshold voltage shift values are 075V and 035V, which are caused by the trapping and detrapping of electrons in the quantum dots. Discharging and charging curves form a part of a hysteresis loop exhibiting a memory function. The electrical injection of confined electrons in QDs products the threshold voltage shift and memory function with the persistent electron trapping, which shows the potential use for a room temperature application.
出处 《发光学报》 EI CAS CSCD 北大核心 2002年第6期554-558,共5页 Chinese Journal of Luminescence
基金 国家自然科学基金资助项目(60177041)
关键词 MBE 垂直堆垛 INAS量子点 HFET存储器件 分子束外延 深能级瞬态谱 场效应管 FET 非挥发存储器 半导体材料 外延生长 砷化铟 self-assembled quantum dots molecular beam epitaxy(MBE) deep level transient spectroscopy field-effect transistor non-volatile memory
  • 相关文献

参考文献8

  • 1Xie Q, Madhukar A, Chen P, et al. Vertically self-organized InAs quantum dots islands on GaAs (100) [J]. Phys.Rev. Lett., 1995, 75:2542-2545.
  • 2Solomon G, Trezza J, Marshall A, et al. Vertically aligned and electronically coupled growth induced InAs islands inGaAs [J]. Phys. Rev. Lett., 1996, 76:952-955.
  • 3Koike K, Li S, Yano M. Molecular beam epitaxial growth and characterization of the vertically aligned InAs quantumdots embedded in Al0.5Ga0.5As [J]. Jpn. J. Appl. Phys., 2000, 39:1622-1628.
  • 4Koike K, Saitoh K, Li S, et al. Room-temperature operation of a memory-effect AlGaAs/GaAs heterojunction field-effect transistor with self-assembled InAs nanodots [J]. Appl. Phys. Lett., 2000, 76:1464-1466.
  • 5Irvine A, Palmer D. First observation of the EL2 lattice defect in indium gallium arsenide growth by molecular beam epitaxy [J]. Phys. Rev. Lett., 1992, 68:2168-2171.
  • 6Anand S, Carlsson N, Pistol M-E, et al. Deep level transient spectroscopy of InP quantum dots [J]. Appl. Phys.Lett., 1995, 67:3016-3018.
  • 7Ghosh S, Kochman B, Singh J, et al. Conduction band offset in InAs/GaAs self-organized quantum dots measured bydeep level transient spectroscopy [J]. Appl. Phys. Lett., 2000, 76:2571-2573.
  • 8Medeiros-Ribeiro G, Leonard D, Petroff P. Electron and hole energy level in InAs self-assembled quantum dots [J].Appl. Phys. Lett., 1995, 66:1767-1769.

同被引文献20

  • 1贾国治,姚江宏,舒永春,王占国.近红外波段InAs量子点结构与光学特性[J].发光学报,2007,28(1):104-108. 被引量:3
  • 2Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current [ J]. Ap- pl. Phys. Lett. , 1982, 40(11) :939-941.
  • 3Ledentsov N N. Long-wavelength quantum-dot lasers on GaAs Substrates: From media to device concepts [ J ]. IEEE J. Sel. Top. Quant. Electron. , 2002, 8(5) :1015-1024.
  • 4Bimberg D. Quantum dots for lasers, amplifiers and computing [J]. J. Phys. D: Appl. Phys. , 2005, 38:2055-2058.
  • 5Zhukov A E, Maksimov M V, Kovsh A R, et al. Effect of an excited state optical transition on the linewidth enhancement factor of quantum dot lasers [ J]. Semiconductors, 2012, 46(2) :235-240.
  • 6Harder C, Vahala K, Yarn A. Measurement of the hnewidth enhancement factor c~ of semiconductor lasers [ J ]. Appl. Phys. Lett. , 1983, 42(4) :328-330.
  • 7Devaux F, Sorel Y, Kerdiles J F. Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter [ J ]. J. Lightwave Technol. , 1993, 11 (12) : 1937-1940.
  • 8Jeong J, Park Y K. Accurate determination of transient chirp parameter in high speed digital lightwave transmitters [ J ]. Electron. Lett. , 1997, 33 (7) :605-606.
  • 9Schneider S, Borri P, Langbein W, et al. Linewidth enhancement factor in InGaAs quantum-dot amplifiers [J]. IEEE J. Quant. Electron. , 2004, 40(10) : 1423-1429.
  • 10Jin R, Boggavarapu D, Khitrova G, et al. Linewidth broadening factor of a microcavity semiconductor laser [ J ]. Appl. Phys. Lett. , 1992, 61(16):1883-1885.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部