期刊文献+

基于访问频率的Hash树 被引量:4

A Hash Tree Based on Frequency of Data Accessed
下载PDF
导出
摘要 Hash树是一种常用的数据结构。当Hash树不能完全装入内存时,会增加缺页中断次数,导致算法效率下降,为此本文研究并提出了根据项集的联合概率生成Hash树的方法。按访问频率将Hash树结点数据顺序地排放在线性空间中。这种数据存储方式既能适应操作系统中的程序局部性特征,又能达到减少I/O次数、提高数据存取效率的目的。 Hash tree is a data structure that is used frequently.But if the nodes of the tree are not fully loaded into the main memory,the hashbased algorithm becomes not effective due to the increasing of interrupts of paging faults.In this paper,a method for hash tree generation based on the joint probability of item set is presented.The data is arranged sequentially in linear space according to the access frequency.Such data storaging mode can either adapt the program local character feature of operating system or acheiving the objective for reducing the I/O operations and enhancing the data access efficiency.The result of experiments showed that the optimized hash tree performed better.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2003年第1期88-91,共4页 Journal of Jilin University:Engineering and Technology Edition
基金 吉林省自然科学基金资助项目(19990528)
关键词 访问频率 HASH树 数据存取频率 缺页中断 数据结构 Hash tree data accessed frequency page faults
  • 相关文献

参考文献5

  • 1Agrawal R,Srikant R.Fast algorithms for mining association rules[Z].In Proc.of the 20th VLDB Conference Santiago,Chile,1994.
  • 2Park J S,Chen M S,Yu P S.An effective hash-based algorithm for mining association rules[Z].In Proc.1995 ACM-SIGMOD Int.Conf.Management of Data.San Jose,CA,1995.
  • 3Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[Z].In Proc.2000 Acm-Sigmod Int.Conf.Management of Data.Dallas,TX,2000.
  • 4李雄飞,苑森淼,董立岩,全勃.多段支持度数据挖掘算法研究[J].计算机学报,2001,24(6):661-665. 被引量:23
  • 5李雄飞,刘光远,郭励焕,苑森淼,侯天伦.二次挖掘相联规则算法[J].吉林大学学报(工学版),2002,32(2):73-77. 被引量:6

二级参考文献8

  • 1[1]Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In: Proc ACM SIGMOD Conference on Management of Data, Washington D C, 1993. 207-216
  • 2[2]Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc 20th VLDB Conference Santiago,Chile, 1994. 487-499
  • 3[3]Houtsma M, Swami A. Set-oriented mining of association rules. IBM Almaden Reserch Center,Research Report RJ 9567, 1993
  • 4[4]Bayardo R, Agrawal R. Mining the most interesting rules. In: Proc KDD-99, San Diego, 1999. 122-131
  • 5[5]Agrawal R, Mannila H, Toivonen H, Verkamo A. Fast discovery of association rules. In: Fayyad U,Piatetsky-Shapiro G Symth P, Uthurusamy R eds. Advances in Knowledge Discovery and Data Mining. New York: AAAI/MIT Press, 1996. 307-328
  • 6冯玉才,冯剑琳.关联规则的增量式更新算法[J].软件学报,1998,9(4):301-306. 被引量:227
  • 7周海岩.关联规则的开采与更新[J].软件学报,1999,10(10):1078-1084. 被引量:40
  • 8李雄飞,苑森淼,董立岩,全勃.多段支持度数据挖掘算法研究[J].计算机学报,2001,24(6):661-665. 被引量:23

共引文献27

同被引文献7

  • 1Raghu Ramakrishnan、Johannes Gehrke. Database Management System. Second Edition, McGraw Hill.
  • 2施伯乐等.数据库系统教程.高等教育出版社.
  • 3Hector Garcia-Molina. Database System Implementation. Prentice Hall. 2000
  • 4Raghu Ramakrishnan, Johannes Gehrke. Database Management System. Second Edition, McGraw Hill.
  • 5施伯乐等编著.数据库系统教程.北京:高等教育出版社.
  • 6施伯乐.数据库系统教程[M].北京:高等教育出版社,2002.
  • 7Ramakrishnan R, Gehrke J. Database Management System[M]. 2nd ed. [S. 1.]: McGraw Hill, 1998.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部