摘要
基于叉树数据结构,实现了一种用于三维直角叉树切割网格的自适应算法,包括对几何外形,以及对流场计算的自适应网格加密技术。在初始网格的生成过程中,根据相邻网格的物面法向向量间的差值,进行针对外形的自适应网格加密;在流场计算中,根据相邻网格间选定物理量梯度的变化,进行针对流场的自适应网格加密。详细地描述了三维直角叉树切割网格的生成过程,以及对任意网格的切割细分算法。在自适应过程中,分别采用了八叉树和全叉树的数据结构,八叉树是基本的数据结构,而全叉树的采用,使网格具有了各向异性的特征,从而大大的减少了自适应网格的数量。采用中心有限体积法,求解Euler方程,并运用上述方法,完成了对外形和流场的自适应网格加密算法,获得了较好的数值计算结果,证明了自适应算法的正确性,体现了直角叉树切割网格自适应技术的有效性和实用性。
The paper presents an adaptive refinement method of the Cartesina grid for the Euler equations.Given the definition of body configuration,geometrybased refinement of Cartesian grids is generated automatically through cellcutting algorithm.Solutionbased grid adaptations are carried out after converged solutions are obtained on a given grid.In the course of initial grid generation,a twostep raycasting algorithm to excluded cells inside the body and a cellmerging technique to avoid numerical insability are described.An Octree and Omnitree data structure has beed to store the data,which respectively support isotropic and anisotropic grid refinement.For the sake of flow calculation,four separate data entities are defined.A flow solver of the Euler equations is performed by a conventional algorithms,including finite volume method and RungeKutta tinestepping scheme.The flow solver supports arbitrary control volume.Based on the above approach,the numerical analysis of flows around ONERA M6 wing and the wing/body configuration is finished.The numerical results presented show flexibility and accuracy of this approach.
出处
《空气动力学学报》
CSCD
北大核心
2002年第4期394-402,共9页
Acta Aerodynamica Sinica
基金
航空基金资助项目(98A53005)
西北工业大学博士论文创新基金资助项目