期刊文献+

一类一般线性聚亚苯基图Q_h的Wiener拓扑指标 被引量:1

Wiener Index for a Class of Linear Phenylene Molecular Graph
下载PDF
导出
摘要 文章给出了一类一般线性聚亚苯基图hQ的Wiener拓扑指标的线性递推公式,通过求解差分方程而得到了它的Wiener拓扑指标的精确表达式。 The value of the Wiener Index for a class of linear phenylene molecular graph is calculated, and the linear recursive formulas is obtained, and then the exact expressions are gained by solving some difference equations of the recursions.
作者 陈德勤
出处 《四川轻化工学院学报》 2002年第4期4-10,共7页 Journal of Sichuan Institute of Light Industry and Chemical Technology
关键词 线性聚亚苯基图Qh Wiener拓扑指标 差分方程 递推公式 精确表达式 linear phenylene molecular graph hQ wiener index difference equation linear recursive formulas exact expressions
  • 相关文献

参考文献11

  • 1Gutman I, Polansky O E. Mathematical Concepts in Organic Chemistry [M]. Springer- Verlag. Berlin (1986).
  • 2Bonchev D, Rouvry D H. Chemical Graph Theory-Introduction and Fundamentals [M]. Gordon and Breach. New York (1991).
  • 3Rouvry D H. Chemical Applications of Topology and Graph Theory [M]. R. B. King Ed., Elsevier, Amsterdam 1983, 159.
  • 4Rouvry D H. The Modeling of Chemical Phenomena Using Topological Indexes [J]. J.Comput. Chem. 1987, 8:470-480.
  • 5Gutman I. The Topological Indices of Linear Polyphenylenes [J]. J. Serb. Chem. Soc. 1995, 60 (2): 99- 104.
  • 6Zhang F , Zhou M, Matching Polynomials of Two Classes of Graphs, Discrete Applied Mathematics [J]. 1998, 20:253-260.
  • 7Trinajatic N. Chemical Graph Theory (second edition) [M].CRC Press. Inc. (1992).
  • 8Gutman I, Klavoar S A Method for Calculating Wiener Numbers of Benzenoid Hydrocarbons [J]. ACH- Models in Chem. 1996, 133(4): 389-399.
  • 9Merris R. An Edge Version of the Matrix-Tree Theorem and the Wiener Index[J]. Lin. Matlilin Alegbra. 1988, 25:291-296.
  • 10Klavar S, Gutman I. Wiener Number of Vertex-Weighted Graphs and a Chemical Application [J]. Discrete Applied Math. 1997, 80:73-81.

同被引文献5

  • 1Trinajatic N.Chemical Graph Theory (second edition)[J].CRC Press, Inc,1992,.
  • 2Gutman I Klav°ar S.A Method for Calculating Wiener Numbers of Benzenoid Hydrocarbons[J].ACH-Models in Chem,1996,133(4):389-399.
  • 3Merris R.An Edge Version of the Matrix-Tree Theorem and the Wiener Index[J].Lin Matlilin Alegbra,1988,25:291-296.
  • 4Rouvry D H.Chemical Applications of Topology and Graph Theory[J].R. B. King Ed., Elsevier, Amsterdam,:198-198.
  • 5Gutman I.The Topological Indices of Linear Polyphenylenes[J].J. Serb. Chem. Soc,1995,60(2):99-104.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部