期刊文献+

路面不平度影响下的汽车驱动桥动载荷 被引量:21

Moving Force of Rear Axle Under Rough Road
下载PDF
导出
摘要 在考虑阻尼和刚度的前提下,建立了路面不平度影响下的汽车驱动桥振动系统模型及微分方程表达式·通过Laplace变换和线性系统理论给出了求系统固有频率的方法并得出了微分方程的解析解·运用微分方程特解与通解内在关系的理论,给出了微分方程的数值解·解析解偏重于控制方面的研究,数值解偏重于对结果的重视,在编程及仿真模拟时采用数值方法求解效果较好,推荐采用Newton Raphson算法·这两种解完善了驱动桥所受动载荷的表达式,为驱动桥的有限元动态分析与设计提供了载荷方面的准备· With considering elastic and damping modulus of suspendens and wheels, a vehicular model of system′s vibration and a differential equation group of vibration with influence of rough road were built. This differential equation group is a ordinary differential equations and initial conditions can be found or assume. With Laplace change and theory of lineal system, a method of calculable systematical selffrequencies was given, and the analytic result of differential equation was obtained. With the relation between the special solution and common solution of a differential equation,a number result was got. The analytic result lays stress on controlling study and number result lays stress on calculation result. The number result can be used in program and simulink, especially NewtonRaphson method was recommended. These results amend the express styles of rear axle in moving force. A preparedness for finite element in design and simulation was done.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第1期50-53,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(59835050).
关键词 路面不平度 驱动桥 数学模型 车辆工程 振动方程 微分方程 LAPLACE变换 动载荷 rear axle mathematics model vehicular engineering vibracational equation differential equation Laplace moving force
  • 相关文献

参考文献9

  • 1Owen S J,Sarigal S. Surface mash sizing control[J]. International Journal for Numerical Methods in Engineer, 2000,47(3):497-511.
  • 2Hong D,Liu H W. Some new formulations of smoothness conditions and conformality conditions for bivariate splines[J]. Computers & Mathematics with Applications, 2000,40(1):117-125.
  • 3Li Z C. High convergence rates of digital image transformation by numerial integration using spline functions[J]. Computers & Methmatics with Applications, 2001,41(7):229-255.
  • 4Pan Z L, Pan C Y. The calculation of optimum speed ratio of bevel-helical reducing gear[A]. In: Leinonen. Tenth World Congress on the Teory of Mechine and Mechanisms[C]. Oulu:Oulu University Press, 1999.2245-2250.
  • 5Wang X,Wang Y O. Non-liner behavior of spherical shallow shells bonded with piezoelectric actuators by the differential quadrature element method (DQEM)[J]. International Journal for Numerical Methods in Engineering, 2002,53(6):1477-1490.
  • 6Kulikou G M, Plotnikove S v. Simple and effective elements based upon Timoshenko-Minddin Shell theory[J]. Computer Methods in Applied Mechanics and Engineering, 2002,191(11-12):1173-1174.
  • 7Sridharan S, Zeggane M. Stiffened plates and cylindrical shells under interactive buckling[J]. Finite Elements in Analysis and Design, 2001,38(2):155-178.
  • 8Lbrahimbegovic A, Brank B, Courtois P. Stress resultant geometrically exact form of classical shell model and vector-like parameterization of constrained finite rotations[J]. International Journal for Numerical Methods in Engineering, 2001,52(11):1235-1252.
  • 9Fioretto A, Sgarro A.A second step information measure and the uncertainty of bodies of evidence[A]. In:Soheil S. Information Processing and Management of Uncertainty in Knowledge[C]. NY: Prentice Hall, 1996.687-691.

同被引文献99

引证文献21

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部