期刊文献+

贝叶斯概率图像自动分割研究 被引量:8

A Study on Bayesian Probabilistic Image Automatic Segmentation
原文传递
导出
摘要 探讨了一种新的图像自动分割的方法。提出应用高斯有限混合模型与期望-极大化算法对图像特征空间的数据进行聚类,采用信息理论准则(ITC)确定要分割的图像区域数目,用贝叶斯概率分割图像。整合这些技术可以实现图像自动分割,而且实验结果表明信息理论准则可以确定适当的区域数目。 A novel method for automatic image segmentation is invesligated. It is proposed that to apply a Gaussian finite mixture model with EM algorithm to cluster the data in image feature space, to adopt the information theoretical criteria (ITC) to determine how many regions should be segmented on a given image, to apply Bayesian probabilistic classification for the segmentation of the given image. Combining these techniques can implement automatic image segmentation, and experiments show that reasonable region number can be determined by ITC.
作者 郭平 卢汉清
出处 《光学学报》 EI CAS CSCD 北大核心 2002年第12期1479-1483,共5页 Acta Optica Sinica
关键词 贝叶斯概率 图像自动分割 分割区域数目 有限混合模型 期望-极大化算法 图像分割 图像处理 automatic image segmentation region number determination finite mixture model EM algorithm
  • 相关文献

参考文献12

  • 1Fu K S, Mui J K. A survey on image segmentation.Pattern Recognition, 1981, 13( 1 ) : 3- 16
  • 2Dempster A P, Laird N M, Rubin D B. Maximum-like lihood from incomplete data via the EM algorithm. J.Royal Statist. Society (B), 1977, 39( 1 ) : 1 - 38
  • 3Redner R A, Walker H F. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 1984,26(2) : 195-239
  • 4Santago P, Gage H D. Statistical models of partial volume effect. IEEE Trans. Image Processing, 1995, 4( 11): 1531- 1540
  • 5Sanjay-Gopal S, Hebert T J. Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Processing, 1998, 7(7) : 1014-1028
  • 6Guo P, Cheung C C, Xu L. Region number determination in automatic image segmentation based on BKYY model selection criterion. Proceedings of 1999 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing,Antalya, Turkey, June 20-23, 1999, 2:743-746
  • 7Akaike H. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control,1974, 19(6):716-723
  • 8Bozdogan H. Modle Selection and Akaike's Information Criterion: The General Theory and its Analytical Extensions. Psychometrika, 1987, 52(3):345-370
  • 9Schwarz G. Estimating the Dimension of a Model. The Annals of Statisticals, 1978, 6(2) :461-464
  • 10Lai Z B, Guo P, Wang T Jet al., Comparison on bayesian YING-YANG theory based clustering number selection criterion with information theoretical criteria.Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN '98), Anchorage, USA,1998, 1:725-729

二级参考文献1

  • 1郭平,Proceedings of International Conference On Neural Information Processing,1995年

共引文献3

同被引文献107

引证文献8

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部