期刊文献+

基于互信息的多分辨率三维脑图像配准方法 被引量:2

Method of Multi-Resolution 3D Image Registration by Mutual Information
下载PDF
导出
摘要 在 3 D多模医学图像的配准方法中 ,最大互信息法精度高、鲁棒性强、使用范围广。本文将归一化互信息作为相似性测度 ,采用不同的采样范围和采样子集 ,使用 Powell多参数优化法和 Brent一维搜索算法对 3 D CT、MR和 PET脑图像进行了刚体配准。为了加快配准速度 ,使用了多分辨的金字塔方法。对 PET图像采用基于坐标的阈值选取方法对图像进行分割预处理 ,消除了大部分放射状背景伪影。 Maximization of mutual information is a powerful criterion for 3D medical image registration, allowing robust and fully accurate automated rigid registration of multi-modal images in a various applications. A method based on normalized mutual information for 3D image registration was presented on the images of CT, MR and PET. Powell's direction set method and Brent's one-dimensional optimization algorithm were used as optimization strategy. A multi-resolution approach is applied to speedup the matching process. For PET images, pre-procession of segmentation was performed to reduce the background artefact. According to the evaluation by the Vanderbilt University, Sub-voxel accuracy in multi-modality registration had been achieved with this algorithm.
出处 《生物医学工程学杂志》 EI CAS CSCD 2002年第4期599-601,共3页 Journal of Biomedical Engineering
基金 IAEA资助项目 ( CPR-110 35 )
  • 相关文献

参考文献9

  • 1章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 2Maes F, Vandermeulen D, suetens P. Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information. Med Image Anal,1999;
  • 3∶3733 Pluim JPW, Maintz JBA, Viergever MA. Mutual information matching in multiresolution contexts. Image Vision comput,2001;19∶45
  • 4Maes F. Segmentation and registration of multimodal medical images: from theory, implementation and validation to a useful tool in clinical practice. Ph D Thesis, Leuven KU, Faculteit Toegepaste Wetenschappen, Leuven, Belgium, 1998
  • 5Maes F, Collignon A, Vandermeulen D, et al. Multi-modality images registration by maximization of mutual information. IEEE Trans Med Image,1997;16∶187
  • 6Studholme C, Hill DDG, Hawkes DJ. A overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition,1999;32∶71
  • 7Thomas ML, Claudia G, Klaus S. Survey: interpolation methods in medical image processing. IEEE Trans Med Image, 1999; 18∶1049
  • 8Meyer C, Boes JL, Kim B, et al. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality images fusion using affine and thin plate spline-warped geometric deformations. Med Image Anal,1997;1∶195
  • 9Pluim JPW, Maintz JBA, Viergever MA. Interpolation artifacts in mutual information-based image registration. Comput Vision and Image Understanding, 2000;77∶211

共引文献221

同被引文献23

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部