期刊文献+

三层前向人工神经网络全局最优逼近 被引量:2

Three-Layer Feed forward Artificial Network Global Optimum Approach
下载PDF
导出
摘要  提出了求解不等式约束非线性优化问题的群体复合形进化算法,提出的算法能充分利用目标函数值的信息、优化搜索过程具有较强的方向性和目标性,收敛速度快,且是全局优化算法;将群体复合形进化算法应用于三层前向人工神经网络逼近,提出了三层前向人工神经网络全局最优逼近算法;将三层前向人工神经网络全局最优逼近算法应用于实例,表明了提出的全局最优逼近算法的有效性。 In this paper,a more effective method that called multi-Complexes Evolution Algorithm for Constraint Nonlinear Optimization Problems ispresented.This new method can use the information of the objective function;the searching process for optimization of the method is directional and objective.This new method is a global optimization method.Multi-Complexes evolution Algorthm is applied to three-layer feed forward artificial neural network,and the algorithm of three-layer feed forward artificial network global optimum approach is presented.Several cases are studied;the validity of the algorithm of three-layer feed forward artificial neural network global optimum approach is confirmed.
出处 《西藏大学学报(社会科学版)》 2002年第1期65-71,共7页 Journal of Tibet University
关键词 前向神经网络 全局优化算法 进化算法 复合形算法 feed forward artifictial neural Network Global Optimization Method Evolution algorithm Complexes Algorithm.
  • 相关文献

参考文献3

  • 1[1]Duan, Q., Sorooshian, S. and Gupta, V. K. Optimal use of SCE - UA global optimization method for calibrating watershed models [J]. Journal of Hydrology, 1994,158: 265 ~ 284.
  • 2[2]Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs. [ M ]. New York: Springer, 1996: 24~ 35.
  • 3[3]Necht- Nielsen R., Theory of the Back- Propagation Neural Network. in: Proc IEEE International Conference on Neural Network. Washington D. C. 1989: 593 - 605.

同被引文献14

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部