期刊文献+

模糊C-球壳聚类算法及其在血液细胞图像中的应用 被引量:1

Fuzzy C Spherical Shell Cluster Algorithm and an Application to Blood Cell I mage
下载PDF
导出
摘要 文章从经典的模糊C均值算法开始通过改变其中相似性的度量形式,介绍了一种模糊C球壳聚类(FCSS)算法。在将该算法应用于细胞显微图像半径统计时,采用基于形态学的图像预处理措施,可以获得FCSS算法中有关原型模式的知识,加快收敛速度并避免随机初始化造成的局部极小问题。 Fuzzy C spherical shell cluster algorithm is an extension of classic al f uzzy C means algorithm that established for clustering shell shape patterns.In an application to blood cell image processing,by several steps of proper proces sing of blood cell images using morphological operations,we thus obtain a prio r knowledge for the cluster prototypes,and training sets with spherical shell s hape.The number and radiuses of blood cells can be calculated with a few iterat ions using introduced approach.
作者 沈谦 王涛
出处 《微电子学与计算机》 CSCD 北大核心 2002年第12期34-36,共3页 Microelectronics & Computer
基金 国家自然科学基金资助项目(60271024) 安徽省教委科学基金资助项目(2000J1023)
  • 相关文献

参考文献6

  • 1N B Karayiannis, P-I Pai. Fuzzy Vector Quantization Algorithms and Their Application in Image Compression. IEEE Trans. Image Processing, 1995, 4(9): 1193~1201.
  • 2H Frigui, R Krishnapuram. Clustering By Competitive Agglomeration. Pattern Recognition, 1997, 30(7):1109~1119.
  • 3J C Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York, 1981.
  • 4H Frigui, R Krishnapuram. A Comparison of Fuzzy ShellClustering Methods for the Detection of Ellipses. IEEE Trans. Fuzzy Systems, 1996, 4(2): 193~199.
  • 5N Theera-Umpon, P D Gader. Counting White Blood Cells Using Morphological Granulometries. J. of Electronic Imaging, 2000, 9(2):170~177.
  • 6N Otsu. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Systems, Man, and Cybernetics, 1979,9(1):62~66.

同被引文献12

  • 1Banfield J D, Raftery A E. Ice floe identification in satellite images using mathematical morphology and clustering about prieipal eurves[J]. Journal of the American Statistical Association, 1992,87:7 - 16.
  • 2Zhao X, Cui L R. Defect pattern recognition on nano/ micro integrated circuits wafer[C]//Proceedings of the IEEE International Conference of Nano/Micro Engineered and Molecular Systems. Bangkok, Thailand:[s. n. ], 2007, accepted.
  • 3Dave R N. Fuzzy shell clustering and applications to circle detection in digital images[J]. International Journal of General Systems, 1990,16(4):343- 345.
  • 4Dave R N. Generalized fuzzy C-shell clustering and detection of circular and elliptical boundaries[J]. Pattern Recognition, 1992,25(7): 713 - 721.
  • 5Hoeppner F. Fuzzy shell clustering algorithms in image processing., fuzzy C-rectangular and 2-reetangular shells [J]. IEEE Transactions on Fuzzy Systems, 1997,5(4): 599 -613.
  • 6Man Y, Gath I. Detection and separation of ring-shaped clusters using fuzzy clustering [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(8):855 - 861.
  • 7Zhong S, Ghosh J. A unified framework for modelbased clustering[J]. Journal of Machine Learning Research, 2003(4) :1001 - 1037.
  • 8Banfield J D, Raftery A E. Model-based Gaussian and non-Gaussian clustering [J]. Biometrics, 1993, 49: 803 - 821.
  • 9Smyth P. Clustering sequences with hidden Markov models[M]. Massachusett, USA: MIT Press, 1997.
  • 10Ambroise C, Govaert G. Constrained clustering and kohonen self-organizing maps[J]. Journal of Classification, 1996,13:299- 313.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部