摘要
推导出永磁同步电动机 (PMSM)的数学模型 ,讨论了常输入电压、常外部转矩条件下系统的稳态特性 .该模型在适当的参数选择和外部输入下 ,可以呈现出非常复杂的极限环或混沌行为 .基于Takagi_Sugeno模糊建模方法 ,给出了永磁同步电动机的TS模糊模型 ,这为进一步研究模糊和混沌理论的内在联系 ,及利用基于模糊模型的控制方法控制混沌现象提供了一条途径 .计算机仿真结果表明TS模糊系统的吸引子与原系统的混沌吸引子是拓扑等价的 .
A mathematical model of a permanent-magnet synchronous motor (PMSM) is derived, and the steady-state characteristics of this system, when subject to constant input voltages and constant external torque, are formulated. It is shown that the PMSM model can exhibit a variety of chaotic phenomena under some choices of system parameters and external inputs. Based on TS fuzzy modeling methodology, the TS fuzzy model of the PMSM chaotic system is presented, so the interaction between fuzzy system and chaos theory can be explored, and then fuzzy-model-based control methodologies can be used to control chaos in chaotic systems. Computer simulations show that the strange attractors in the derived TS fuzzy system and original chaotic system are topologically equivalent.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2002年第6期841-844,共4页
Control Theory & Applications
基金
国家自然科学基金 (5 0 1770 0 9)
广东省自然科学基金 (0 1165 2 )资助项目