期刊文献+

应用复双谱对角切片的雷达多目标特征提取 被引量:3

Radar Multiple Target Feature extraction Using the Diagonal Slice of the Complex Bispectrum
下载PDF
导出
摘要 提出了应用Chirp-z变换把依赖于傅里叶变换的双谱对角切片扩展为可在z平面上选择任意变换路径和任意频率分辨率的复双谱对角切片,并作为多目标模式的分类特征,能获取双谱以外的可分性特征。为压缩特征维数,选择可分性最好的特征,提出了实用的距离准则,在两类模式情况下,该准则等于Fisher准则,用于多类模式比Fisher准则更易于选择特征。最后应用上述方法,给出了雷达多目标特征提取的实验结果。 The diagonal slice of bispectrum based on Fourier transform is enlarged into the diagonal slice of complex bispectrum, which can be computed by selecting arbitrary transform path and arbitrary frequency resolution in the z-plane via Chirp-z transform. The separability features beyond the bispectrum can be obtained by The complex bispectrum. To compress feature dimensionality and select optimal separability features, the distance criterion is also given here. In two class patterns, it is equal to Fisher criterion, and in multiple class patterns, it is easier to select feature than Fisher criterion. Finally, by using above methods, the experimental results of the multiple target feature extraction are given.
出处 《信号处理》 CSCD 2002年第6期500-504,共5页 Journal of Signal Processing
关键词 复双谱对角切片 雷达 多目标特征提取 CHIRP-Z变换 目标识别 Bispectrum Chirp-z transform Feature extraction.
  • 相关文献

参考文献8

  • 1Jouny, "Redar Target Identification Using the Bispectrum: A comparatire Stndy" IEEE Trans, AES, Vol31, No.1, 1995, pp.69-77.
  • 2V.Chandran and S.L.Elgar, "Pattern Recognition Using Invariants defined from Higher Oder Spectra-One-dimention Inputs" IEEE Trans. SP, Vol.41, No.1, 1993,PP.205-212.
  • 3J.K.Tugnait, "Detection of Non-Gaussian Signal Vsing Integrated PolysepctMvm" IEEE Trans. SP, Vol.42, No.11, 1994, pp.3137-3149.
  • 4X.Liao and Z.Bao, "Circularly Integrated Bispectra: Novel Shift Invariant Featunes for High-Resolution Radar Target Recognition" Eleclronics letters, Vol.34, No.19, 1998, pp. 1879-1880.
  • 5X.D.Zhang, Y.Shi and Z.Bao, "A New Fenture Vector Using Selected Bispectra for Signal Classification with Application in Radar Target Recognition" IEEE Trans, SP, Vol. 49, No.9, 2001, pp.1875-1885.
  • 6C.Lnikias and J.M.Mendel, "Signal Processing with Higher-order Spectra" IEEE SP magziene, July, 1993,pp.9910-37.
  • 7L.R.Rabiner, "The Chirp z-Transform A Cgorithon and Its Application". The Bell System Technical Journal, May-June, 1969,pp.1249-1292.
  • 8K.M. Hock. "Narrowband Weak Signal Detection by Higher Order Spectrum," IEEE Trans. SP, Vol.44,(4),pp.874-879, 1996.

同被引文献24

  • 1Wax M, Kailath. Detection of signal by information theoretic criteria [J]. IEEE Trans AP, 1985,33(2) :387 - 392.
  • 2H T Wu,J F Yang, F K Chen. Source number estimator using Gerschgorin disks[A]. Proc ICCP[C]. Adelaide: IEEE, 1994. 261-264.
  • 3H T Wu, J F Yang, F K Chen. Source number estimators using transformed Gerschgorin radii[J]. IEEE Trans SP, 1995,43(6):1325-1333.
  • 4H T Wu, C L Chen, A new Gerschgorin radii based method for source number detection[A]. Proc 10th IEEE Workshop on Statistical Signal and Array Processing[C]. Pennsylvania: IEEE, 2000.104-107.
  • 5边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 6黄建国 赵建平.用低阶AR模型极点法进行舰船目标分类[J].水中兵器,1996,(2):26-32.
  • 7Schroeder M R. Recognition of complex acoustic signals[M]. Life sciences research report 5, Abakon Verlag, Berlin, 1977. 324- 326.
  • 8Boashash B, O' Shea P. A methodology for detection and classification of some underwater acoustic signals using time-frequency analysis approaches[J]. IEEE Trans. on Acoustics, Speech and Signal Processing, 1990, 38(11): 1829-1841.
  • 9Learned R E, Wilsky A S. A wavelet packet approach to transient signal classification[J ]. Applied and Computational Harmonic Analysis, 1995(2): 265- 278.
  • 10Simon Tucker. Auditory analysis of sonar signals[R]. Ph. D.Transfer Report, 2001.

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部