期刊文献+

GF(2^m)域上椭圆曲线点乘算法的改进

Improvement of scalar multiplication algorithm on elliptic curve over GF(2m)
下载PDF
导出
摘要 介绍了在GF(2 m)域上实现非超异椭圆曲线的点乘的算法 ,它是Montgomery算法的改进。该算法无需乘法预处理 ,运算速度快于IEEEP1363草案标准上“加 -减”算法 ,而且占用的内存资源少 ,易于软、硬件方式的实现。因此 ,该算法更利于在那些资源有限的环境中实现椭圆曲线加密体制。 This paper describes an algorithm for computing scalar multiplications on non-supersingular elliptic curve defined over GF(2m). This algorithm is an optimized version of Montgomery's method. It requires no precomputed multiples of a point and is faster than the addition-subtraction method described in draft standard IEEE P1363. In addition, it is easy to implement in both hardware and software, requires less memory than projective schemes. Therefore, it is much convenient to implement ECC in restricted environments.
出处 《河北省科学院学报》 CAS 2002年第4期208-212,共5页 Journal of The Hebei Academy of Sciences
关键词 点乘算法 椭圆曲线 GF(2^M)域 公钥加密体制 MONTGOMERY算法 密码学 Elliptic curves Over GF(2m) Point multiplication
  • 相关文献

参考文献8

  • 1Agnew, Mullin and Vanstone.An Implementation of Elliptic Curve Cryptosystems Over F2155[J].IEEE journal on selected areas in communications. 1993,11(5).
  • 2ANSI X9.62: The Elliptic Curve Digital Signature Algorithm(ECDSA), draft, July 1997
  • 3P Montgomery.Speeding the Pollard and Elliptic Curve methods of factorization,Mathematics of Computation,1987,48,243-264.
  • 4A.Menezes.Elliptic curve public key cryptosystems[M].Kluwer Academic Publishers.1993.
  • 5IEEE P1363, Editorial Contribution to Standard for Pblic Key Cryptography, draft,1998
  • 6IEEE P1363/D13(draft Version 13), Standard Specifications for Public Key Cryptography. 1998
  • 7Lopez and Dahab.Improved Algorithms for Elliptic Curve Arithmetic in GF(2n), SAC'98, LNCS Springer Verlag,1998
  • 8杨明,胥光辉,齐东望,等译. 密码编码学与网络安全:原理与实践(第二版)[M].北京:电子工业出版社.2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部