期刊文献+

Modified Recursive Least Squares Algorithm with Variable Parameters and Resetting for Time-Varying System

Modified Recursive Least Squares Algorithm with Variable Parameters and Resetting for Time-Varying System
下载PDF
导出
摘要 Based on the idea of the set-membership identification, a modified recursive least squares algorithm with variable gain, variable forgetting factor and resetting is presented. The concept of the error tolerance level is proposed. The selection criteria of the error tolerance level are also given according to the min-max principle. The algorithm is particularly suitable for tracing time-varying systems and is similar in computational complexity to the standard recursive least squares algorithm. The superior performance of the algorithm is verified ma simulation studies on a dynamic fermentation process. Based on the idea of the set-membership identification,a modified recursive least squares algorithm with variable gain, variable forgetting factor and resetting is presented.The concept of the error tolerance level is proposed.The selection criteria of the error tolerance level are also given according to the min-max principle.The algorithm is particularly suitable for tracing time-varying systems and is similar in computational complexity to the standard recursive least squares algorithm.The superior performance of the algorithm is verified via simulation studies on a dynamic fermentation process.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第3期298-303,共6页 中国化学工程学报(英文版)
关键词 least-squares algorithm dynamic fermentation process parameter estimation IDENTIFICATION 可变参量 化学工程 递归最小平方算法 随时间交换系统
  • 相关文献

参考文献17

  • 1Googwin, G., Sin, K., AdaptiveFiltering Prediction and Control, Englewood Cliffs, Prentice-Hall, NJ (1984).
  • 2Salgado, M. E., Goodwin, G. C., Middleton, R. H., "Modified least squaresalgorithm incorporating exponential resetting and forgetting", Int. J. Control, 47(2), 477-491(1988).
  • 3Benveniste, A., "Design of adaptive algorithms for the tracking of timevarying systems", Int. J. Adapt. Contr.Signal Proc., 1 (1), 3-29 (1987).
  • 4Ljung, L., "Adaption and Tracking in system identificationA survey",Automatica, 26 (1), 7-21 (1990).
  • 5Bai, E. W., Huang, Y. F., "Variable gain parameter estimation algorithms forfast tracking and smooth steady state",Automatica, 36 (7), 1001-1008 (2000).
  • 6Bai, E. W., Nagpal, K., Tempo, R., "Bounded-error parameter estimation: Noisemodels and recursive algorithms",Automatica, 32 (7), 985-999 (1996).
  • 7.Deller, J. R., Nayeri, M., Odeh, S. F., "Least squares identification witherror bounds for real time signal processing and control", Proc. IEEE, 81 (6),813-949 (1993).
  • 8Gollamudi, S., Nagaraj, S., Kapoor, S., et al., "Setmembership filtering and aset-membership normalized LMS algorithm with an adaptive step size", IEEE SignalProc. Letters, 5 (2), 111-114 (1998).
  • 9Norton, J. P. (Ed.), "Special issue on bounded-error estimation, Part I",Int. J. Adapt. Control Signal Proc., 8 (1),1-118(1994).
  • 10Norton, J. P. (Ed.), "Special issue on bounded-error estimation,Part Ⅱ",Int. J. Adapt. Control Signal Proc., 9 (1),1-134 (1995).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部