摘要
Gt factor is a low-molecular-weight peptide isolated from the extracellular culture of wood-degrading fungus Gloeophyllum trabeum. It is capable of enhancing degradation of cellulose. Its action mechanism was investigated and it was found that Gt factor could reduce Fe3+ to Fe2+. Electron paramagnetic resonance (EPR) spectroscopy revealed in the presence of O2, Gt factor could drive the formation of H2O2 via a superoxide anion O2.- intermediate and mediate the generation of hydroxyl radical HO˙ in a Fenton-type reaction. All these provided evidence for the formation of HO˙ in some wood-degrading fungi.
Gt factor is a low-molecular-weight peptide isolated from the extracellular culture of wood-degrading fungus Gloeophyllum trabeum. It is capable of enhancing degradation of cellulose. Its action mechanism was investigated and it was found that Gt factor could reduce Fe3+ to Fe2+. Electron paramagnetic resonance (EPR) spectroscopy revealed in the presence of O2, Gt factor could drive the formation of H2O2 via a superoxide anion O2.- intermediate and mediate the generation of hydroxyl radical HO˙ in a Fenton-type reaction. All these provided evidence for the formation of HO˙ in some wood-degrading fungi.
基金
This work was supported by grant 39970004 from the National Natural Science Foundation of China.