期刊文献+

欧氏空间浸入超曲面的几个球性定理

Several Spherial Theorems on Immersed Hypersurface in Euclidean Space
下载PDF
导出
摘要 论文主要证明了Rn+ 1中完备浸入的可定向超曲面M ,若Gauss Kroneker曲率为非零常数 ,且截曲率有界 ,则M为球面 ;并证明了Rn+ 1中浸入的紧致超曲面M ,若Hr=a1Hr-1+a2 Hr-2 +… +asHr-s,其中a1,… ,as 为非负常数 。 Let M be an immersed orientable complete hypersurface in the Euclidean space \%R\% n+1 , with nonzero constant Gauss Kroneker curvature and finite sectional curvature, then M is a hypersphere; Let M be an immersed compact connected hypersurface in the Euclidean space \%R\% n+1  and satisfy H r=a 1H r-1 +a 2H r-2 +...+a sH r-s , where a 1,...,a s are nonnegative constants,then M is a hypersphere.
作者 程永君 陈卿
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2002年第6期643-648,共6页 JUSTC
关键词 欧氏空间 球性定理 超曲面 Gauss-Kronecker曲率 主曲率 平均曲率 完备浸入 hypersurface gauss kronecker curvature main curvature mean curvature
  • 相关文献

参考文献8

  • 1Cheng S Y and Yau S T. Hypersurfaces with constant scalar curvature[J]. Math Ann., 1977,225:195-204.
  • 2Hartman P. On complete hypersurfaces of nonnegativesectional curvatures and constant m-th curvature[J]. Trans. Amer Math. Soc.,1978,245:303-374.
  • 3Montiel S and Ros A. Compact hypersurfaces: The Alexandrove theorem for higher order mean curvature. In: Differential Geometry. ed. Lawson B & Tenenblat K. Longman Sci & Tech: Pitman monographs and surveys inpure and appli math,1991,(52):279-296.
  • 4Walter R. Compact hypersurfaces with a constant higher mean curvature function[J]. Math Amm,1985,270:125-145.
  • 5Spivak M. A comprehensive introduction to differential geometry, vol.4[M]. Berkeley: Publish or Perish Inc,1979.
  • 6Wu H. The Spherical Images of Convex Hypersurfaces[J]. J Diff Geom, 1974,9:279-290.
  • 7Yau S T. Harmonic functions on complete Riemannian manifolds[J]. Comm Pure and Appl Math, 1975,28:201-228.
  • 8Grding L. An inequality for hyperbolic polynomials[J]. J Math Mech, 1959,8:957-965.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部