期刊文献+

严格反馈非线性系统的自适应逆最优控制 被引量:7

Adaptive Inverse Optimal Control for Strict-feedback Nonlinear Systems
下载PDF
导出
摘要 介绍了逆最优控制的基本思想 ,针对一类具有未知定常参数和未知时变有界扰动的严格反馈非线性系统 ,给出了逆最优增益配置定理 .使用Backstepping算法 ,设计了逆最优控制器 .该控制器是非线性的、连续的 ,且比较容易实现 ,仿真结果表明该控制算法的有效性 .同时指出逆最优控制系统具有稳定裕度 ,因而具有局域鲁棒性 。 This paper introduces the basic idea of inverse optimal control and gives the solvable theorem of inverse optimal gain assignment problem. By means of an adaptive backstepping algorithm for strict feedback nonlinear continuous systems with unknown time varing bounded disturbances and constant unknown parameters, an inverse optimal controller is designed, which is nonlinear, continuous and easier to realize. The results of simulation show the effectiveness of the control algorithms. The paper shows simultaneously that inverse optimal systems yield stability margins, namely, achieving locally robustness, which are a nonlinear analog of Kalman's margins for the linear quadratic regulator.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2002年第6期713-719,共7页 JUSTC
关键词 严格反馈非线性系统 有界扰动 逆最优控制 自适应控制 Backstepping算法 局域鲁棒性 strict feedback systems unknown time varing bounded disturbance inverse optimal control adaptive control backstepping algorithm
  • 相关文献

参考文献11

  • 1Freeman R A, Kokotovic P V. Robust Nonlinear Control Design[M]. Boston: Birkhauser, 1996.
  • 2Freeman R A,Kokotovic P V. Inverse optimality in robust stabilization[J]. SIAM Journal on Control and Optimization, 1996,34:1 365-1 391.
  • 3Krstic M, Li Z H. Inverse optimal design of input-to-state stabilizing nonlinear controllers[J]. IEEE Trans. Automatic Control,1998,43(3):336~350.
  • 4Krstic M, Deng H. Stabilization of Nonlinear Uncertain Systems[M]. New York: Springer, 1998.
  • 5Krstic M. Stability Margins in Inverse Optimal Input-to-State Stabilization[J]. Proceedings of the American Control Conference Philadelphia, Pennsylvania, 1998, 3:1 648-1 652.
  • 6Li Z H. Optimal Lyapunov Design of robust and adaptive nonlinear controller, 24 Page Preview, Page17, PQDD, Dec. 1998.
  • 7Jing Z P, Kanellakopoulos I. Global Output-feedback Tracking for a Benchmark Nonlinear System[J]. IEEE Trans. On Automatic Control, 2000,45(5):1 023-1 027.
  • 8Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design[M]. New York: Wiley, 1995.
  • 9Krstic M, Tsiotras P. Inverse optimal stabilization of a rigid spacecraft[J]. IEEE Trans. on Automatic Control, 1999,44(5): 1 042-1 049.
  • 10Koshkouei A J, Zinober A S I. Adaptive Backstepping Control of Nonlinear Systems with Unmatched Uncertainty[J]. Proceedings of the 39th IEEE Conference on Decision and Control. December, 2000,5:4765-4770.

同被引文献34

  • 1孙梅,田立新.一种新的混沌系统的逆最优控制[J].江苏大学学报(自然科学版),2004,25(6):513-516. 被引量:4
  • 2王俊,奚宏生,季海波,陈志福.具有不确定Wiener噪声随机非线性系统的自适应逆最优控制[J].自动化学报,2004,30(6):824-832. 被引量:2
  • 3Yun ZHANG Yungang LIU Yuqin DING.A new nonlinear output tracking controller via output-feedback[J].控制理论与应用(英文版),2006,4(4):372-378. 被引量:2
  • 4[4]AWAD E L G.Optimal control of the genital herpes epidemic[J].Chaos,Solitons and Fractals,2001,12:1817-1822.
  • 5[5]AWAD E L G,YASSEN M T.Optimal control and synchronization of Lotka-volterra model[J].Chaos,Solitons and Fractals,2001,12:2087-2093.
  • 6[6]SANCHEZ E N,PEREZ J P.Martinez M,Chen G.Chaos stabilization:an inverse optimal control approach[J].Latin Amer Appl Res:Int J,2002,32:111-114.
  • 7[7]MARAT R,JOSE M B.On an optimal control design for Rssler system[J].Physics Letters A,2004,333:241-245.
  • 8[8]LU Jinhu.CHEN Guanrong.CHENG Daizhan.A new chaotic system and beyond:the generalized Lorenz-like system[J].Int J Bifurcation and Chaos,2004,14(5):1507-1537.
  • 9[1]Lorenz E.Deterministic non-periodic flow.J Atmos Sci,1963;20:130-141
  • 10[2]Ott E,Grebagi C,Yorke J A.Controlling chaos.Phy Rev Lett,1990;64:1196-1199

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部